

Deliverable No. D5.1 Due Date 31/03/2021

Description

Develop the programming interfaces for integration of the
technologies and software components developed in WP4
and WP5

Type Other
Dissemination
Level

PU

Work Package No. WP5
Work Package
Title

Integrated Plug&Play
Gatekeeper Dynamic
Intervention services

Version 1.0 Status Final

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement Nº 857223

D5.1 Programming Interfaces for Dynamic
Services Integration

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 3

Authors

Name and surname Partner name e-mail

Alba Gallego UPM agallego@lst.tfo.upm.es

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

Alvaro Belmar UPM abelmar@lst.tfo.upm.es

Eduardo Buhid UPM ebuhid@lst.tfo.upm.es

Susanna Laurin FUNKA susanna.laurin@funka.com

Melad Munther FUNKA melad.munther@funka.com

History

Key data
Keywords API, Developer Portal, WoT-TD

Lead Editor UPM

Internal Reviewer(s) Cristiano Pagetti (OK), Dave Raggett (W3C)

Abstract
This deliverable reports on the progress of T5.1 with the main goal of describing the design
and development of the GATEKEEPER Developer Portal that will establish the way of

Date Version Change

01/02/2021 0.1 Initial draft

01/03/2021 0.5 Contribution from partners

24/03/2021 0.9 Version ready for internal review

09/04/2021 1.0 Final version

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 4

integrating APIs as digital things. A digital thing is intended as a digital twin representation
of a device, service or data set that can be accessed through APIs.

As initial step, the working methodology is described, in addition it will be defined the
mock-ups of the portal that provides the expected functionalities for developer users.
Finally, development strategy and the portal code will be shared.

This deliverable is a live document that will be updated in a second version by M24.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation or both.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 5

Table of contents
TABLE OF CONTENTS ... 5

ABBREVIATIONS .. 6

LIST OF TABLES .. 7

LIST OF FIGURES ... 8

1 INTRODUCTION.. 9

1.1 STRUCTURE OF THE REPORT ... 10

2 RELATIONSHIP TO OTHER GATEKEEPER DELIVERABLES .. 11

3 METHODOLOGY ... 12

3.1 UX-DESIGN RATIONALE AND OBJECTIVES .. 12

4 FEATURES OF THE GATEKEEPER DEVELOPER PORTAL ... 14

5 RESULTS .. 17

5.1 MOCK-UP PROTOTYPE .. 17

5.2 DEVELOPMENT ... 26

6 CONCLUSIONS ... 30

7 REFERENCES ... 31

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 6

Abbreviations
Table 1: List of abbreviations

API Application Programming Interface

CSS Cascading Style Sheets

FHIR Fast Healthcare Interoperability Resources

GTA Gatekeeper Trust Authority

HTML Hypertext Markup Language

JSON JavaScript Object Notation

JSON-LD JavaScript Object Notation for Linked Data

MVVM Model View View-Model

RDF Resource Description Framework

SPA Single Page App

TD Thing Description

TMS Thing Management System

UML Unified Modelling Language

UX User experience

W3C World Wide Web Consortium

WoT Web of Things

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 7

List of tables
TABLE 1. USER REQUIREMENTS EXTRACTED FROM SURVEYS .. 14

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 8

List of figures
FIGURE 1. GATEKEEPER PLATFORM ROADMAP .. 10

FIGURE 2. GATEKEEPER PLATFORM ARCHITECTURE ... 11

FIGURE 3. GATEKEEPER DEVELOPER PORTAL UML DIAGRAM ... 15

FIGURE 4. LOGIN SCREEN .. 17

FIGURE 5. HOME SCREEN ... 18

FIGURE 6. HOME SCREEN WITH NOTIFICATIONS UNFOLDED .. 18

FIGURE 7. HOME SCREEN · PROFILE .. 19

FIGURE 8. HOME SCREEN · LEARN AND NEWS SECTION ... 19

FIGURE 9. HOME SCREEN · THINGS MANAGEMENT .. 20

FIGURE 10. HOME SCREEN · THING PREVIEW .. 20

FIGURE 11. THINGS SCREEN .. 21

FIGURE 12. THINGS SCREEN · OVERVIEW OF THE SELECTED THING (1) .. 21

FIGURE 13. THINGS SCREEN · OVERVIEW OF THE SELECTED THING (2)... 22

FIGURE 14. DISCOVER SCREEN .. 23

FIGURE 15. DISCOVER SCREEN · NEWS ... 24

FIGURE 16. DISCOVER SCREEN · TUTORIAL ... 24

FIGURE 17. MY APPS SCREEN ... 25

FIGURE 18. MY APPS SCREEN · APP SELECTED ... 25

FIGURE 19. DESIGN ARCHITECTURE PATTERN MODEL VIEW VIEW-MODEL [9] .. 26

FIGURE 20. ANGULAR ARCHITECTURE [8] ... 27

FIGURE 21. GATEKEEPER DEVELOPER PORTAL ANGULAR ARCHITECTURE ... 28

file:///C:/Users/albag/Downloads/GATEKEEPER_WP5_D5.1_DEL_210205_V1.0%20Reviewed.docx%23_Toc68773718

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 9

1 Introduction
This deliverable is describing the design and development of the Developer Portal

associated to GATEKEEPER platform. The GATEKEEPER developer web portal will

provide users registered as developers with the ability of building novel software solutions

by using application programming interfaces (API), in order to dynamic integrate

components and software developed in WP4 and WP5 within the GATEKEEPER platform.

GATEKEEPER platform components are described with Thing Descriptions (TD). A TD

provides a digital twin representation of a service, a device, a dataset or a more general

physical thing. This digital representation follows the W3C Web of Things standard1.

Specifically, a TD describes:

- what the component is (linking also semantic meaning of the thing through JSON-

LD standard);

- how a component could be accessed (through a set of standardized security

definitions that describe the authorization and authentication flow in order to

access the thing);

- how a component can be used (TD includes the definition of interaction patterns

that are used for the description of the API associated to the thing).

Within the portal, a developer will have access to an easy-to-use web environment that

provides a rich user interface designed to manage things, learn about the things and test

the interaction with them.

The GATEKEEPER developer portal is mainly a front-end web application where

developers can:

• see the things that they have created and published within the GATEKEEPER

platform;

• see the things that they have access to use;

• see the things that they can buy;

• see the learning material about the things they are using;

• see create and manage applications where they can use things.

1 Web of Things standard, https://www.w3.org/WoT/documentation/ , Last access March 2021

https://www.w3.org/WoT/documentation/

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 10

Figure 1. Gatekeeper platform roadmap

Following the Gatekeeper platform release roadmap in Figure 1, the Gatekeeper

developer portal is expected to be delivered in the Gatekeeper platform version 2

expected by the end of 2021.

1.1 Structure of the report
This report includes 5 sections. Section 1 is an overview of the Gatekeeper Developer

Platform functionalities that will allow services integration within the Gatekeeper platform.

Section 2 describes the relation of the current deliverable and the other ones of the

project.

Section 3 and 4 describe the methodology used for the design of the Developer Portal

and the associated functionalities.

Section 5 describes the resulting mock-up of the portal as well as the initial development

based on the prototype of section 4.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 11

2 Relationship to other GATEKEEPER
deliverables

GATEKEEPER Developer Portal is strongly integrated with the TMS, the GTA and the
GATEKEEPER marketplace.

Figure 2. GATEKEEPER platform architecture

Figure 2 shows the logical view of the GATEKEEPER platform (described in the D3.2.2).
Within this figure, the relations among the core components of the platform are shown.
The Developer Portal is part of the GATEKEEPER web environment and share
functionalities and look and feel with the marketplace (D4.6). Both GATEKEEPER
developer portal and marketplace are client of the services provided by the TMS
described in the deliverable D4.2 and the GTA described in the deliverable D4.5.

MULTI ROBOT
CONNECTORS

GATEKEEPER PLATFORM ARCHITECTURE
LAYERED VIEW

AI/ML Components

Core Platform components

External/Pilot components

WEB DATA
CONNECTORS

PERSONAL HEALTH
GATEKEEPER APP

GATEWAY
BLE / FHIR

DATA COLLECTORS

EHRRobot

External
Raw Data Sources

Device
Device

Device

DATA SOURCES

EXTERNAL
APPS (E.G. PILOT APPS)

AUTHORING TOOL FOR DASHBOARDSDATA PRESENTATION

DATA FEDERATION – INTEGRATION ENGINE
DATA INTEGRATION

HOME&HEALTH
ACTIVITY

MONITORING

AI PERSONALIZED RISK
DETECTION &

ASSESSMENT

MEDICAL
BASED AI

ALGORITHMS

EXTERNAL
AI SERVICES

DATA STORAGE

DATA ANALYSIS

DATA FEDERATON -

SERVER
(FOR EHR & PHR)

FHIR
GK Profile

RDF
FHIR

GK Profile
FHIR Server

GK Resource Profile

RDF
RDF

BIG DATA
INFRASTRUCTURE

GOVERNANCE & BUSINESS

W
E

B
 O

F
 T

H
IN

G
S

T
H

IN
G

 M
A

N
A

G
E

M
E

N
T

S
Y

S
T

E
M

A
P

P
 M

G
M

T

P
O

R
T

A
L

G
A

T
E

K
E

E
P

E
R

 T
R

U
S

T
A

U
T

H
O

R
IT

Y

C
U

S
T

O
M

E
R

S
P

O
R

T
A

L

Thing
Directory

A
D

M
IN

IS
T

R
A

T
IO

N
P

O
R

T
A

L

G
a

te
k

e
e

p
e

r W
e

b
 E

n
v

iro
n

m
e

n
t

L
E

A
R

N
IN

G

P
O

R
T

A
L

D
e

v
e

lo
p

e
r P

o
rta

l
M

a
rk

e
tp

la
c

eINTELLIGENT
MEDICAL DEVICE

CONNECTORS

EHR

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 12

3 Methodology
Overall approach. A programming interface for the integration of services may seem like
a user interface that would be highly technical by nature. But for the project results to be
sustainable, the interface must be intuitive and easy to use for any stakeholder, no matter
their previous experience or knowledge about the specifics of the project. Given that the
GATEKEEPER platform will serve many different types of users, it has high ambitions when
it comes to universal design in all parts.

In order to determine which features and functionalities users expect to find on the
developer portal, a co-creation approach based on the survey method was selected.
According to Business Research Methodology, the survey method [1] ”is used to test
concepts, reflect the attitude of people, establish the level of customer satisfaction and
conduct segmentation research”. In this case, an online survey was circulated to be filled
by developers without any support.

In parallel, an analysis was made of existing developer platforms such as the Samsung
developer platform, and the Facebook developer platform, to extract the main features
that the GATEKEEPER developer portal should include. With these two inputs, the UPM
team drafted the desired set of functionalities, which is described in Section 4. This grid of
functionalities formed the baseline for on-going work on the user interface, which was
performed in an iterative process involving the technical team of UPM as well as UX-
design and accessibility experts from Funka.

UX-design, or User experience design, is a human-first way of designing an interface [2].
The terminology has changed over the years as the field has been known as usability, user
friendliness, usefulness and so on, and there is an ongoing debate in the community about
the perfect definition.

While the graphical design has to do with the visual appearance, aesthetics or ”look-and-
feel”, the UX-design seeks to support user behaviour with the interface. Therefore, it can
be seen as more of a conceptual, or functional, design. It builds upon traditional human–
computer interaction (HCI) design and extends it by addressing all aspects of a product or
service as perceived by users.

That is why the use case of developers uploading and handling software solutions has
been in focus. By using an iterative approach, we have strived to add value to the user
through every element. Agile development is based on short phases of work and frequent
reassessments. The agile approach includes a cross-functional and collaborative process
where teams with different experiences and competencies contribute to continual
improvement. [3] We have repeatedly analysed how complex system interaction can be
slimmed down and still retain its functionality. Through this approach, we aim to deliver a
fluid experience to as many users as possible.

3.1 UX-design rationale and objectives
The UX-design work performed is based on the principles of universal design, a concept
of designing all products and services to be aesthetic and usable to the greatest extent
possible by everyone, regardless of their age, ability, or status in life [4] The concept of
universal design is based on the idea that if you have ”all” potential user requirements in
mind from the start of a project, the result will be possible to use for a much broader
audience – hopefully all. Instead of developing for the mainstream, with the risk of being
forced to add specific accommodations for users with different needs, the universal

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 13

design principles make sure that even extreme use cases are taken into account. What is
necessary for some, is beneficial for all.

The concept of universal design can be divided into seven basic principles, that are to be
applied to all decisions made in the design process:

• Perceptible information

• Simple and intuitive use

• Approach (size and space)

• Low physical effort

• Tolerance for error

• Flexibility in use

• Equitable use

The first part of the UX-design process consisted of a general review of the mock-up and
its different features. In this phase, we were examining broad elements based on the use
cases described by the task leaders. Items considered were for example the user flow,
how well the navigation supports the user through its interface and the accessibility of
generic objects such as buttons and links. After remediating the overall framework to be
more aligned with the user scenario, we turned to the details.

In this process, we looked at what type of information is displayed at any given moment
and how the different parts of the content are balanced when it comes to size and
placement. The focus was on making the interface and workflow as intuitive and
straightforward as possible, without losing neither functionality nor flexibility.

An internal site map was constructed to understand the underlying logic of the workflow
and the relationship between objects. This is a well-established method to ensure that
items are placed and presented in a logical order, possible to find through more than one
user behaviour and that all necessary steps and information are provided to the user in
the expected order. For this purpose, we have added breadcrumbs to enhance navigation
possibilities that fit a variety of user needs.

As an integrated part of the work done, the mock-up delivered, presented in section 5,
provides the basis for EN301549/WCAG 2.1 compliance when developed. The EN301549
standard [5] serves as the minimum requirements for presumed conformance of the EU
Web Accessibility Directive [6] covering all public sector websites. On the other hand, the
Web Content Accessibility Guidelines (WCAG) are global guidelines for accessibility of
web interfaces that the harmonised EN-standard points to [7].

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 14

4 Features of the GATEKEEPER developer
portal

This chapter describes the result of the activities described in the previous section, in
order to extract the main characteristics and use cases of the GATEKEEPER developer
portal. To this end, the first step has consisted of identifying the stakeholders who will
interact with the developer portal. In this case, only the GATEKEEPER developers will use
this tool.

Once identified the potential users, it is necessary to know what type of functionalities
these users expect to find. As described in D2.3, to extract all developer portal
requirements and understand the user needs, online forms were circulated. These online
forms that developers had to answer included some general questions about their
expertise in semantic technologies, API platform or payments options, and on the other
hand, an open question about how developers would like to use the GATEKEEPER
developer portal. As a result, six functional and usability requirements were identified.
Table 1, are presented these requirements with a description of how each requirement is
mapped as functionality in the GATEKEEPER developer portal.

Table 1. User requirements extracted from surveys

Requirement Rationale Functionality in the GATEKEEPER

developer portal

Account creation

and

management

Management the access to

the platform.

On the login page, it will appear as a

registration menu.

On the home screen, it will appear as a

profile button to manage user data

Login feature

Allows the user to access the

customised functionalities

according to his/her role

According to the user role, the view and

features available will be different

Provision of an

understandable

documentation

Need to explain easily how to

use the platform and Things,

for example, using Swagger.

Each Thing will include a getting started

section with useful information and first

steps

Search Things

available

Search Things by filtering

(e.g., categories, names, …) to
get more info.

On the home screen, a search component

will appear.

When the user wants to add things to an

app, the user will be able to see Things

filtered by categories.

In the case of the

free account,

there will be no

requirement to

provide a credit

card

Free accounts should not

require providing a credit

card number.

It will not be necessary to include credit

card

Provide

developer portal

as web-based

Needed to access easily the

Things and their info.

The developer portal will be web-based

and it will include a shortcut to access

Things.

As reported in section 3.1, considering developers’ reports in surveys and the outcomes of
analysis of different platforms, it has been identified different use cases represented in

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 15

the UML diagram of Figure 3. This diagram graphically represents the interactions that the
developer can perform when using the GATEKEEPER developer portal.

Figure 3. GATEKEEPER developer portal UML diagram

The use cases identified in Figure 3 are below described with the associated
functionalities:

• Login/Logout: This functionality allows users to enter and leave the GATEKEEPER
developer portal. According to the credential, the user will have available different
kinds of functionalities. For the login, the GATEKEEPER Trust Authority (GTA)
service is necessary.

• Restore the password: If the user forgets the password, he/she should be able to
request a new password.

• Translation: Users should have the possibility to select between different
languages (Spanish, Greek, English, etc), preventing language from being a barrier
to use the portal.

• Shortcuts: On all screens, users should be able to go to the Home screen and main
functionalities.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 16

• Profile management: Users should be able to edit their account configuration
(username, password, associated email, etc.).

• Notifications: They are necessary to enhance user satisfaction and engagement.
Through notifications, users receive only relevant information related to their apps,
Things updates, etc.

• Make a tutorial: Developers request to provide understanding information. For this
purpose, it is needed to include tutorials for learning how to use the developer
portal or Things.

• Read the news: A news section can be included to maintain developers informed
about different topics.

• Search/Filter a Thing: It is important to include the functionality of searching and
filter by type (e.g., purchased/not purchased) of Things to facilitate users the
access to a concrete Thing. To manage Things the TMS service is needed.

• Access to Things: Add a functionality that allows users to have a complete
overview of a concrete Thing is indispensable. For example, the user should be
able to access general information about the Thing, know how to start to manage
this Thing, know its JSON format and perform some test with the API Reference.
To manage Things the TMS service is needed.

• Create an app: When an app is created, it is necessary to specify its characteristics.
An app is composed of Things, so the functionality of adding Things to an app
should be included. On the other hand, Things should be purchased before being
used, therefore the functionality of purchasing Things has to be included too. To
manage Things the TMS service and Marketplace connection are needed.

• Manage an app: The entire app or its characteristics should be able to be edited or
removing.

The next section presents the prototype of the GATEKEEPER developer portal, which
provides a global overview of how, and where, the features previously described are
integrated into the different screens.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 17

5 Results
The result of the task is a well thought through mock-up that includes all the key aspects
of the programming interfaces for the integration of the technologies and software
components. Each part of the interface and its functionality are presented below.

5.1 Mock-up prototype
The first screen that the user finds when enters in the GATEKEEPER Developer Portal is
the Login (in Figure 4), a sign-in interface with input fields, links and buttons. In this screen
the main functionalities are:

• Login/Logout: This functionality allows users to enter the GATEKEEPER developer
portal. According to the credential, the user will have available different kinds of
functionalities. For the login, the GATEKEEPER Trust Authority (GTA) service is necessary.

• Restore the password: If the user forgets the password, he/she should be able to
request a new password.

• Translation: Users should have the possibility to select between different languages
(Spanish, Greek, English, etc), preventing language from being a barrier to use the portal.

Figure 4. Login screen

When the user enters the credentials, the next screen is the Home screen (in Figure 5).
This page consists of a header with a centralized search bar that is in line of sight of the
user. Alongside are notifications and user profile page and below is the navigation bar
followed by start page content. The user profile management button allows users to edit
their account configuration (username, password, associated email, etc.). On the other
hand, notifications (in Figure 6) are necessary to enhance user satisfaction and
engagement. Through notifications, users receive only relevant information related to
their apps, Things updates, etc.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 18

Figure 5. Home screen

The profile management, in Figure 7, is used to overview and update personal information
and to keep track of your history through statistics.

Figure 6. Home screen with notifications unfolded

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 19

Figure 7. Home screen · Profile

Figure 8 presents the first block of the Home screen. These four cards promote to access
the most recent news and other interesting content, such as tutorials of the use of the
GATEKEEPER developer portal.

Figure 8. Home screen · Learn and News section

The home screen also includes quick access to the most popular Things (Figure 9), where
each container represents a Thing. Each card contains an image, a title, the category of
the Thing, and a short description. Upon hovering with the mouse, or when it gets
keyboard focus, the card slightly expands and a shortcut to the marketplace appears in
the top right corner to purchase the Thing. If the Thing has already been acquired, the
shortcut will direct the user to the Thing page (in Figure 12).

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 20

Figure 9. Home screen · Things management

When clicking on a card, a preview window folds below the card displaying more content,
as Figure 10 shows. This lets the user view more screenshots, share and bookmark the
Thing, and read a more thorough description before deciding to acquire the Thing.

Figure 10. Home screen · Thing preview

The next shortcut is Things, in Figure 11, this screen contains information of all the Things
available on the platform, sorted into different categories. Organized in the same familiar
layout and grid, you can filter and sort the content to narrow down the options to your
liking.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 21

Figure 11. Things screen

When the user selects a purchased Thing, the next screen presented is the Thing
overview (Figure 12). It is made by a stepper with 4 steps (Get started, Thing description,
API and analytics). Through this screen, the user will be able to access general information
about the Thing, know how to start to manage this Thing, know its JSON format, perform
some test with the API Reference and access to analytics.
This section will be detailed in the next version of the deliverable providing integrated
environment for testing the API that are associated to a thing description.

Figure 12. Things screen · Overview of the selected Thing (1)

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 22

Figure 13. Things screen · Overview of the selected Thing (2)

Any related content that does not fit on this page can still be shared via “Helpful links”.
Logos of the websites signal where each link leads to.

The third shortcut is Discover (Figure 14), a landing page for the tutorials and the news to
give the user a brief overview. Here, users can catch up on the latest news and trending
tutorials to keep up to speed. If you want to discover more, there are shortcuts to view
more.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 23

Figure 14. Discover screen

When selecting a news article, you will be directed to the article page to view the whole
content, as Figure 15 shows. Each article has the publish date as well as the author’s name
and the category, which you also can click on to view more of.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 24

Figure 15. Discover screen · News

When selecting a video file, you will be directed to the video page which lets the user
view the content selected as well as be inspired by other recommended videos (Figure
16).

Figure 16. Discover screen · Tutorial

The last shortcut is My apps, in Figure 17, this page holds any application created by the
user and allows him to create new ones. An application can contain different Things. A

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 25

preview of the number of Things inside an application is displayed on each card. Above
the row of cards is a button to create a new application.

Figure 17. My apps screen

When clicking on one of the applications, the user gets a view of all the Things inside the
application (Figure 18). You can also choose to add more things via the button “Add more
things”. This will direct to any acquired Thing and the possibility to purchase new ones at
the marketplace. In the bottom right corner, the developer can manage the settings of the
application and remove them.

Figure 18. My apps screen · App selected

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 26

5.2 Development
For the development of the GATEKEEPER developer portal, we have selected the Angular
framework [8]. Angular is a framework designed to build SPA (Single Page Applications)
web applications using HTML and Typescript languages. The SPA strategy allows the
application to be fully loaded at the first start, doing the application navigability quicker.
Another advantage is that this framework is organized in modules, giving the possibility of
adding new functionalities.

Angular implements the MVVM design architecture pattern (Model View View-Model),
allowing two-way data binding between the view (HTML file) and the controller (typescript
file), shown in Figure 19. In this pattern can be differentiated three components:

• Model: represents the data layer, holding the data information.

• View: responsible of display the data to the user.

• View-Model: intermediate point between model and view layers, taking care of the
business logic.

Figure 19. Design architecture pattern Model View View-Model [9]

As stated above, the Angular framework is organized in modules and, in turn, each module
consists of a set of related components, directives, pipes and services, as Figure 20 shows.
Each module includes the @NgModule decorator and is composed of the following
blocks of functionality:

• Declarations: used to indicate the components which belong to the module.

• Imports: used to indicate the external needed modules to make the current
module work.

• Exports: used to indicate exported components for the module, to be used inside
other modules.

• Providers: indicate all the services to use inside the module.

• Bootstrap: indicate the main component to launch the application.

Any angular application has a principal module called AppModule. This module is in
charge of giving the basic configuration to launch the entire application.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 27

Figure 20. Angular architecture [8]

The main element used by Angular to build applications is called component, which is a
set of HTML, TypeScript, and CSS files. The TypeScript file contains the business logic to
control the HTML file, the HTML file renders the user interface in the browser, and the CSS
file provides the style to the HTML file.

Any Angular application has at least one component called app-component, which is the
root component of the application (normally added in bootstrap section in NgModule).
Another relevant feature of this framework is that it allows adding plugins, such as
Bootstrap or Material, providing the possibility of extending and adding more functionality
to the application.

Once described the main characteristics of the framework selected to develop the
GATEKEEPER developer portal, the next step is to define the Developer Portal component
organization in Angular, shown in Figure 21.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 28

Figure 21. GATEKEEPER developer portal Angular architecture

In this Figure can be seen that each component is mapped with a functionality or screen
of section 5.1.

• AppComponent: The main component loaded as root in the application. Inside this
component is loaded the header component and the router-outlet.

• RouterOutlet: a placeholder that angular dynamically fills based on the current
router status. This will be filed with LoginComponent or HomeComponent.

• HeaderComponent: Act as webpage header element.

• LoginComponent: Used for user authentication.

• HomeComponent: The main component is displayed as the homepage. It contains
a set of other components to construct the design.

• ThingDescriptorComponent: A component to represent a ThingDescriptor. In the
section things of the Home screen, the application displays a set of things.

• DiscoverComponent: Display the information in the discover section of the Home
screen.

• MyAppsComponent: This component contains the functionalities to create, delete,
edit and manage the applications owned by the user.

• UserProfileComponent: This shows the basic information about the logged user.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 29

• VideoComponent: This component is in charge of playing a tutorial video inside the
application.

• NewComponent: Used to display last news.

• StepperComponent: Manages the user guide step-by-step to read information
about the thing descriptor and make tests with the API Reference.

• DataService: This is the service in charge of taking the data from the database
through API calls. All components have access to this service to obtain the data
about ThingDescriptors. This service also implements the canActivate interface to
be used as RouterGuard, to secure the navigation in the application.

The source code of the GATEKEEPER developer portal is Open source and can be found
in UPM Gitlab2.

2 Gatekeeper portal development project, https://gitlab.lst.tfo.upm.es/gatekeeper/cluster-demo/developerportal , Last
access March 2021

https://gitlab.lst.tfo.upm.es/gatekeeper/cluster-demo/developerportal

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 30

6 Conclusions
This document describes the design and the implementation with the Angular framework
of the initial version of the developer portal. The portal is designed on the requirements
expressed by developer in the T2.3 and allow them to manage applications that include
Things and its associated APIs.

In the view of each thing, it will be possible to test the interaction patterns associated with
the thing compatible with Open API as well as explore the thing description in a tree-based
view.

The final version of the developer platform is expected to be released in the version 2 of
the Gatekeeper platform.

Deliverable no 5.1– Programming Interfaces for Dynamic Services Integration

Version 1.0 I 2021-03-31 I GATEKEEPER © 31

7 References

[1] S. L. Jackson, Research Methods and Statistics. A Critical Thinking Approach,
Wadsworth, 2011.

[2] G. Allanwood and P. Beare, User Experience Design: Creating Designs Users Really
Love,

London: Bloomsbury, 2014.

[3] T. Dingsøyr, S. Nerur, V. Balijepally and N. B. Moe, “A decade of agile methodologies:
Towards explaining agile software development,” Journal of Systems and Software,
vol. 85, no. 6, pp. 1213-1221, 2012.

[4] M. Story, J. Mueller and R. Mace, The Universal Design File: Designing for People of
All Ages and Abilities, Raleigh: North Carolina State University, 1998.

[5] ETSI, “EN 301 549 v2.1.2, Accessibility requirements for ICT products and services,”
2018. [Online]. Available:
https://www.etsi.org/deliver/etsi_en/301500_301599/301549/02.01.02_60/en_30
1549v020102p.pdf.

[6] EU, “Directive 2016/2102 on the accessibility of the websites and mobile applications
of public sector bodies,” [Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016L2102&from=EN.

[7] W3C, “Web Content Accessibility Guidelines (WCAG) 2.1,” 2018. [Online]. Available:
https://www.w3.org/TR/WCAG21/.

[8] Angular, "Angular io," 2021. [Online]. Available: https://angular.io/guide/architecture.
[Accessed 01 02 2021].

[9] Microsoft, "docs.microsoft," Microsoft, [Online]. Available:
https://docs.microsoft.com/es-es/xamarin/xamarin-forms/enterprise-
application-patterns/mvvm-images/mvvm.png. [Accessed 01 02 2021].

