

Deliverable No. D4.12 Due Date 31/12/2021

Description
Report describing the Data Federation & Integration framework
allowing the integration and harmonization of data coming
from heterogeneous data sources.

Type Report Dissemination
Level

PU

Work Package No. WP4 Work Package
Title

GATEKEEPER Things
Management Infrastructure &
Development

Version 1.0 Status Final

D4.12 Data Federation and Integration and
Health Semantic Data Lake

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement Nº 857223

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 3

Authors

Name and surname Partner name e-mail

Domenico Martino ENG domenico.martino@eng.it

Paolo Zampognaro ENG paolo.zampognaro@eng.it

Vincenzo Falanga ENG vincenzo.falanga@eng.it

Federica Saccà ENG federica.sacca@eng.it

Eugenio Gaeta UPM eugenio.gaeta@lst.tfo.upm.es

History

Date Version Change

05/11/2021 0.1 Updated Initial ToC from the first version

09/11/2021 0.1 Update section within the document

12/11/2021 0.2 Updated and added new section

18/11/2021 0.3 Added some description on component interaction

26/11/2021 0.4 Added information on GKIE and pilot needs

01/12/2021 0.4 Integrated UPM contribution and added Appendix
section

03/12/2021 0.5 Requirements section has been improved

06/12/2021 0.6 Added information on OKD and some updates

15/12/2021 0.7 Improved section on component interaction

21/12/2021 0.8 Document improvements and conclusions

29/12/2021 0.9 Internal review

30/12/2021 0.9 Addressed W3C comments

20/01/2022 0.9 Quality check review

10/02/2022 0.9 Addressed technical quality check comments

14/02/2022 1.0 Final version

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 4

Key data
Keywords Data Federation, FHIR, RDF

Lead Editor ENG

Internal Reviewer(s) Dave Raggett (W3C)

Abstract
This deliverable is the final version of the Data Federation & Integration framework and
represents an update on the progress of T4.4 aiming to design a framework, named Data
Federation & Integration (DFI), conceived (i) to collect data coming from heterogeneous
data sources (EHR and IOT), (ii) to harmonize the data against specific semantic models
and, finally, (iii) to persist the data in pilot specific cloud nodes. The harmonization steps
will proceed exploiting the GK-FHIR profile as for guidelines and indications provided by
T3.5.

In particular, the updates regard (i) the design and deployment of the communication
function towards the big data platform using kafka; (ii) the integration of a modular web
console named Hawtio. In addition, it has been implemented a set of conversion rules
from custom data model to GK-FHIR-IE based on T3.4 and T3.5 (i.e. Profiles within the FHIR
Implementation Guide). Furthermore, Section I presents a technical feature developed to
integrate/communicate with SAMSUNG devices; Section II is updated with additional
information about implementation details on GK-IE, GK-FHIR Server, a new component
called GK-RDF Watcher and a paragraph on the data conversion. Section III is updated
with the description of the Openshift platform and some technical information on the
already presented component and their relative deployment procedure on the HPE
platform. Besides, other pilots’ needs are added to justify few changes into DFI such as
the use of the OKD procedure.

Finally, in the Appendix are reported Pilots’ data model and the conversion into GK-FHIR
Profile.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation or both.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 5

Table of contents
TABLE OF CONTENTS ... 5

LIST OF TABLES ... 8

LIST OF FIGURES ... 9

INTRODUCTION [UPDATED] ..12

CHANGE LOG [NEW] ... 13

1 DATA FEDERATION AND INTEGRATION V2: OVERVIEW, REQUIREMENTS, DESIGN
 16

1.1 POSITION OF DATA FEDERATION & INTEGRATION INTO GATEKEEPER ARCHITECTURE
[UPDATED] ... 16

1.2 PILOTS AND APPLICATIONS REQUIREMENTS [UPDATED] .. 17

 Requirements [UPDATED] .. 17

1.3 DATA FEDERATION & DESIGN V2 [UPDATED] .. 29

 Architecture [UPDATED] ... 29

 Adopted Semantic models [UPDATED] .. 34

 Declarative approach ... 38

 Programmatic approach v2 ... 43

1.4 INTERACTION WITH BIG DATA PLATFORM DESIGN (T4.3) [NEW] .. 44

 Interaction between Data Federation and Kafka [NEW] ... 45

1.5 COMPONENT INTERACTION AND INTEGRATIONS [NEW] ... 45

 Interaction and integration with Medisantè IoT Connector [UPDATED] 46

 Interaction and integration with Activage gateway [UPDATED] 51

 Interaction and integration with Casa Sollievo della Sofferenza (CSS) Puglia
[UPDATED] ... 53

 Interaction and integration with HealthCloudProxy (HCP) [NEW] 55

 Interaction and integration with Aragon (SALUD) Application [NEW] 57

 Interaction and integration with Poland Application [NEW] .. 58

 Interaction with the OpenCaller [NEW] .. 60

2 DATA FEDERATION AND INTEGRATION V2: IMPLEMENTATION DETAILS 63

2.1 GK-INTEGRATION ENGINE [UPDATED] .. 63

 Apache Camel [UPDATED] .. 63

 Interface [UPDATED] ... 66

 Monitoring Console [NEW] ... 71

 Data Converter [NEW] .. 74

2.2 GK-FHIR SERVER [UPDATED] .. 75

2.3 GK-RDF WATCHER [NEW] .. 77

2.4 RDF4J WORKBENCH .. 81

2.5 DATA FEDERATION & INTEGRATION DOCKERIZATION [UPDATED] .. 82

 Docker overview .. 82

 Migration of Data Federation & Integration to Docker [UPDATED] 84

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 6

2.6 SOURCE CODE [NEW] .. 87

3 DATA FEDERATION AND INTEGRATION V2: DEPLOYMENT ENVIRONMENTS
[UPDATED] ... 88

3.1 OPEN SHIFT AND HPE DATA CENTRE OVERVIEW ... 88

 Platform description: OpenShift [NEW] .. 88

 GK Integration Engine deployed on HPE Data Centre [NEW].. 89

 GK-FHIR Server and GK RDF Watcher deployed on HPE Data Centre [NEW]90

 GK-FHIR Database [NEW] ... 92

 RDF4J Workbench deployed on HPE Data Centre [NEW] ... 93

 Deployment Scenarios [UPDATED] .. 94

 Pilots’ needs [NEW] ... 98

 OKD Installation procedure [NEW] .. 100

 OKD How to test the deployed artifacts [NEW] .. 102

 CI and CD for Data Federation: Jenkins [NEW] ..105

4 CONCLUSION ...106

5 REFERENCES .. 107

APPENDIX A [NEW] .. 109

A.1 DATA MODELS TO HL7-FHIR MAPPING RULE, TERMINOLOGIES AND FHIR [NEW] 109

A.1.1 Puglia Data Model to HL7-FHIR .. 109

A.1.2 Aragon Data Model to HL7-FHIR ... 117

A.1.3 Poland Data Model to HL7-FHIR ... 128

A.1.3.1 Poland SNOMED codes.. 131

A.1.3.2 Poland ICD-10 codes .. 133

A.1.4 ELIOT Hub Collector Data Model to HL7-FHIR ... 134

A.1.5 HealthClouldProxy Data Model to HL7-FHIR... 137

A.1.6 ENVIRA Data Model to HL7-FHIR ... 137

A.2 GK-FHIR DATA TYPE [NEW] ... 139

A.2.1 FHIR-GK-IDENTIFIERS (GK-ID) ... 139

A.2.1.1 PATIENT ... 139

A.2.1.2 DEVICE .. 139

A.2.1.3 QUESTIONNAIRE_RESPONSE ...140

A.2.2 FHIR-GK-VALUESETS (GK-VS) [NEW]..140

A.2.2.1 OBSERVATION-CODE ...140

A.2.2.2 OBSERVATION-CATEGORY .. 144

A.2.2.3 ENCOUNTER-CLASS .. 144

A.2.2.4 ENCOUNTER-HOSPITALIZATION .. 145

A.2.2.5 ENCOUNTER-PARTICIPANT-TYPE ... 145

A.2.2.6 ENCOUNTER-TYPE..146

A.2.2.7 CONDITION-CODE ...146

A.2.2.8 CONDITION-CATEGORY .. 147

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 7

A.2.2.9 CONDITION-STATUS.. 147

A.2.2.10 UCUM ... 147

A.3 FHIR-GK-EXTENSIONS (GK-EXT) [NEW].. 148

A.4 GENERAL DESCRIPTION OF DATA FEDERATION. .. 149

A.5 GK-INTEGRATION ENGINE .. 149

A.5.1 How to build a new converter...150

A.5.2 Step 1 details ..150

A.5.3 Step 2 details ..151

A.5.4 Step 3 details ... 152

A.6 ENVIRA JSON ...154

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 8

List of tables
TABLE 1 PUGLIA PILOT SOURCES .. 19

TABLE 2 SAXONY PILOT SOURCES .. 20

TABLE 3 ARAGON PILOT SOURCES ... 22

TABLE 4 GREECE PILOT SOURCES .. 23

TABLE 5 BASQUE COUNTRY PILOT SOURCES .. 24

TABLE 6 CYPRUS PILOT SOURCES .. 25

TABLE 7 POLAND PILOT SOURCES ... 26

TABLE 8 MILTON KEYNES PILOT SOURCES ... 27

TABLE 9 PILOTS’ REQUIREMENTS-1... 28

TABLE 10 PILOTS’ REQUIREMENTS-2.. 29

TABLE 11 ENVIRA DEVICE FHIR CONVERSION: AN EXAMPLE .. 61

TABLE 12 ENVIRA OBSERVATION FHIR CONVERSION: AN EXAMPLE .. 62

TABLE 13 EHR SOUTHBOUND API .. 67

TABLE 14 IOT SOUTHBOUND API ... 70

TABLE 15 EXAMPLE OF CONVERSION FROM FHIR JSON TO RDF FORMAT ... 78

TABLE 16 GATEKEEPER INTEGRATION ENGINE OPENSHIFT ARTIFACTS LIST ... 89

TABLE 17 GATEKEEPER FHIR SERVER & GK RDF WATCHER OPENSHIFT ARTIFACTS LIST 90

TABLE 18 GATEKEEPER FHIR DATABASE OPENSHIFT ARTIFACTS LIST ... 92

TABLE 19 GATEKEEPER RDF4J OPENSHIFT ARTIFACTS LIST .. 93

TABLE 20 NAMESPACE PER PILOT .. 96

TABLE 21 PILOTS’ NEEDS ...99

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 9

List of figures
FIGURE 1 GATEKEEPER ARCHITECTURE... 16

FIGURE 2 PUGLIA PILOT SCENARIO .. 18

FIGURE 3 SAXONY PILOT SCENARIO .. 20

FIGURE 4 ARAGON PILOT SCENARIO .. 21

FIGURE 5 GREECE PILOT SCENARIO ... 23

FIGURE 6 BASQUE COUNTRY PILOT SCENARIO .. 24

FIGURE 7 CYPRUS PILOT SCENARIO ... 25

FIGURE 8 POLAND PILOT SCENARIO .. 26

FIGURE 9 MILTON KEYNES PILOT SCENARIO ... 27

FIGURE 10 DATA FEDERATION & INTEGRATION THING: OVERVIEW ... 30

FIGURE 11 DATA FEDERATION & INTEGRATION PIPELINE .. 30

FIGURE 12 DATA FEDERATION & INTEGRATION THING ... 31

FIGURE 13 HOW TO USE DATA FEDERATION & INTEGRATION THING .. 31

FIGURE 14 DATA FEDERATION & INTEGRATION FLOW ... 33

FIGURE 15 FHIR IG: AN EXAMPLE OF THE ARTIFACT SUMMARY... 35

FIGURE 16 FHIR IG: AN EXAMPLE OF LOGICAL MODELS .. 36

FIGURE 17 FHIR IG: AN EXAMPLE OF PROFILES ... 37

FIGURE 18 GATEKEEPER IMPLEMENTATION GUIDE (FROM TASK 3.5) .. 37

FIGURE 19 GATEKEEPER DATA MODELS DEFINITION PROCESS .. 38

FIGURE 20 DATA SOURCE AND CONVERTER MODEL .. 39

FIGURE 21 SENSOR RAW DATA TO SEMANTIC KNOWLEDGE ...40

FIGURE 22 SENSORS ONTOLOGIES..41

FIGURE 23 EXAMPLE OF RML RULE SPECIFICATION FOR A SENSOR RAW DATA ... 42

FIGURE 24 TEMPERATURE SEMANTIC REPRESENTATION IN RDF FORMAT .. 43

FIGURE 25 JAVA CONVERTER MODEL ... 44

FIGURE 26 SCHEMA OF INTERACTION BETWEEN DATA FEDERATION AND KAFKA.. 45

FIGURE 27 ELIOT HUB TARGET SYSTEM .. 47

FIGURE 28 ELIOT MANAGE PAGE .. 48

FIGURE 29 ELIOT HUB TEST DEVICES ... 49

FIGURE 30 EXAMPLE OF DATA GENERATED BY MEDISANTÈ DEVICE BT105 ...50

FIGURE 31 ELIOT HUB AND DFI INTEGRATION ...51

FIGURE 32 INTERACTION FLOWS BETWEEN ACTIVAGE AND DATA FEDERATION & INTEGRATION 53

FIGURE 33 SEQUENCE DIAGRAM INTERACTION BETWEEN CSS AND DATA FEDERATION 55

FIGURE 34 SEQUENCE DIAGRAM INTERACTION BETWEEN HCP AND DATA FEDERATION 56

FIGURE 35 LINK BETWEEN PATIENT AND DEVICE BY MEANS DEVICEUSESTAMENT ACCORDING TO
FHIR MODEL ... 56

FIGURE 36 SEQUENCE DIAGRAM INTERACTION BETWEEN ARAGON EHR APPLICATION AND DATA
FEDERATION .. 58

FIGURE 37 SEQUENCE DIAGRAM INTERACTION BETWEEN POLAND EHR APPLICATION AND DATA
FEDERATION .. 59

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 10

FIGURE 38 ENVIRA MODEL: AN EXTRACT OF THE MESSAGE .. 60

FIGURE 39 GK INTEGRATION ENGINE: IMPLEMENTATION STACK .. 63

FIGURE 40 REST INTERFACE USING CAMEL.. 64

FIGURE 41 DATAPROCESSOR FLOWCHART .. 65

FIGURE 42 SWAGGER OF GK-INTEGRATION-ENGINE ... 67

FIGURE 43 SWAGGER EHR SOUTHBOUND API .. 68

FIGURE 44 SWAGGER IOT SOUTHBOUND API.. 70

FIGURE 45 CAMEL EXISTING ROUTES ... 72

FIGURE 46 ROUTE DIAGRAM ... 72

FIGURE 47 ROUTE METRICS .. 73

FIGURE 48 DETAILS ABOUT METRICS ... 73

FIGURE 49 EXPOSED SOUTHBOUND APIS ... 74

FIGURE 50 EXCHANGES ... 74

FIGURE 51 ENGINE TO CONVERT RAW DATA TO FHIR ... 75

FIGURE 52 GK-FHIR-SERVER GUI ... 76

FIGURE 53 GK-FHIR-SERVER GUI OBSERVATION PAGE ... 76

FIGURE 54 GK-RDF WATCHER LOGIC VIEW ... 78

FIGURE 55 GK-FHIR-SERVER INTERCEPTOR AND GK-RDF-WATCHER .. 81

FIGURE 56 RDF4J WORKBENCH: A GENERAL OVERVIEW... 82

FIGURE 57 STEPS TO CREATE A DOCKER CONTAINER ... 83

FIGURE 58 DATA FEDERATION & INTEGRATION IN DOCKER ... 84

FIGURE 59 DOCKERFILE FOR GK-INTEGRATION-ENGINE .. 85

FIGURE 60 DOCKERFILE FOR GK-RDF-WATCHER .. 86

FIGURE 61 DOCKERFILE FOR GK-FHIR-SERVER .. 86

FIGURE 62 GATEKEEPER INTEGRATION ENGINE OKD DEPLOYMENT SCHEMA ... 90

FIGURE 63 ENV SECTION OF THE FHIR SERVER DEPLOYMENT YAML FILE .. 91

FIGURE 64 ENV SECTION OF THE FHIR SERVER DEPLOYMENT YAML FILE .. 91

FIGURE 65 GATEKEEPER FHIR SERVER & GATEKEEPER RDF WATCHER OKD DEPLOYMENT SCHEMA
... 92

FIGURE 66 GATEKEEPER FHIR DATABASE OKD DEPLOYMENT SCHEMA .. 93

FIGURE 67 GATEKEEPER RDF4J OKD DEPLOYMENT SCHEMA .. 94

FIGURE 68 GK CLOUD PLATFORM - OKD .. 95

FIGURE 69 DATA FEDERATION & INTEGRATION DEPLOYED IN OKD CLUSTER... 96

FIGURE 70 TRELLO: A GENERAL OVERVIEW OF ITS USAGE IN GK PROJECT ...99

FIGURE 71 OKD: ADD RESOURCE MENU .. 100

FIGURE 72 OKD: YAML RESOURCE EDITOR .. 101

FIGURE 73 OKD: PLATFORM GATEKEEPER-DEV NAMESPACE SCREENSHOT .. 101

FIGURE 74 OKD: PLATFORM GATEKEEPER-TEST NAMESPACE SCREENSHOT FOCUSED ON
TESTDATAFEDERATION POD GROUP ... 102

FIGURE 75 WEB APPLICATION RELATIVE TO POD LINKED ROUTE ... 103

FIGURE 76 OKD PLATFORM: POD DETAILS .. 104

FIGURE 77 SLACK TOOL: A GENERAL OVERVIEW OF ITS USAGE IN GK PROJECT .. 105

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 11

FIGURE 78 OPENAPI DATA FEDERATION INTEGRATION ENGINE ... 149

FIGURE 79 ENVIRA JSON MESSAGE ..154

FIGURE 80 ENVIRA DEVICE FHIR CONVERSION ... 155

FIGURE 81 ENVIRA OBSERVATION FHIR CONVERSION... 155

https://engit.sharepoint.com/sites/GateKeeper/Documenti%20condivisi/General/Technical%20Activities/WP4/T4.4/Deliverables/D4.12_M27/GATEKEEPER-WP4-D4.12_DEL-20220121_v1.2.docx#_Toc93654462

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 12

Introduction [UPDATED]
This deliverable aims to document the second version specification of the “Data
Federation and Integration and Health Semantic Data Lake” by extending and replacing
the previous deliverable (T4.4, D4.4). In particular, it provides design details of the
connectivity layer bridging IT systems and the GK WoT data space on a pilot-level, thus
enabling data access to final applications or to further predictive analytics and data mining
core services carried out in WP5. It offers the needed mechanisms to harmonize data
coming from heterogeneous data sources registered in the platform, including personal
clinical data source (EHR/EMR), social care data sources, wearable device data sources,
home-based sensor data and activity sensor data, thus producing a Health Semantic Data
Lake (HDSL).

The document provides some updates (marked as [UPDATED]) and new sections (marked
as [NEW]) in order to describe the changes which were needed mainly related:

(i) to enable a better logging\monitoring

(ii) to improve the performance and integrability with the other platform components
and within the HPE deployment environment and

(iii) to design and implement the data converter expected by the project pilots

(iv) to support new conversion flow requested by open callers (Call 1).

According to the development approach, adopted in the whole project, the design of the
Data Federation & Integration framework is defined using an incremental approach.
Therefore, the main goal of the design activity reported in the first version of the document
was to satisfy the requirements scheduled for the first period of the project (M15) while
this second version (M27) was updated taking into account mainly feedback reports
coming from initial pilots’ roll out experiences, issues arising from integration step with the
other GK platform components, open caller requests.

In order to improve the readability of the document some sections of the previous
deliverable (T4.4, D4.4) not affected by any changes (e.g. involved standards) have been
dropped. Details of the document structure are the following:

Section I (ex-Section II in the first version) describes the position of Data Federation &
Integration into Gatekeeper architecture showing the several components with which it
interacts and some updates made in this last version of the deliverable. It offers an update
(compared to the previous one) of the easy modality to enable external heterogeneous
data sources to send their data by harmonizing such data against common semantic
models selected by the project (e.g. HL7 FHIR) and it allows other Things to access such
data. It also provides an update of the general overview of the problems with data
integration process together with several approaches available in the literature and the
perspectives. It lists also all requirements collected during the phone calls made with the
leader of each pilot and updated for this second version; such requirements have been
the starting point for designing the architecture and the interfaces of the Data Federation
& Integration. Moreover, it supports two types of approaches (that are unchanged) to
convert data coming from pilots’ application into the adopted semantic models; the first
one is a declarative approach where a declarative language is used to specify the
conversion rules that are executed by a specific internal engine, while the second one is
a programmatic approach where some JAVA interfaces are provided in order to load a
specific converter. Finally, regarding the interactions managed by the GK platform, in this
version of the deliverable (i) it is added the description of the interaction between Data

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 13

Federation and Kafka; (ii) some changes/addition in the interactions and integrations
compared to the previous release are reported. For instance, Medisantè IoT Connecter,
Samsung Activage gateway, CSS, some pilots’ applications.

Section II describes the internal architecture of the Data Federation & Integration. It
consists of four main components: gk-integration-engine, gk-fhir-server, gk-rdf-watcher,
gk-rdf4j. gk-integration-engine provides the southbound APIs that can be invoked by
pilots’ applications to send their data by harmonizing such data against common semantic
models selected by the project. gk-integration-engine and gk-rdf4j provide the north
bounds APIs that allows the external applications to retrieve persisted data in FHIR and
RDF format. The keycloak component is used to implement the security level of the
application in order to perform integration tests with the other components. These
interactions have been exploited for testing purpose only. In pilots’ environments all calls
to southbound and northbound APIs are expected to be trusted since the interaction with
the Data Federation & Integration is mediated by GTA. In addition, TMS mitigates access
to the Data Federation after authorization provided by the Keycloak service offered by the
GTA. For all components consisting of DFI a docker image has been created and added
in a docker-compose file so that all the containers can be started with one single
command.

Section III provides the migration of DFI to OKD that will be deployed on the HPE (task 4.1)
infrastructure. On the HPE Centre have been also deployed the four main components
(gk-integration-engine, gk-fhir-server, gk-rdf-watcher and gk-rdf4j). The different
possible deployment scenarios are described. The cluster consists of several PODs that
interaction with Service. The contact point among OKD and external applications are
Routes.

Section IV provides the conclusion the document.

Appendix A reports information about pilot data models, FHIR data type conversion and
describes the instruction to build a new Java converter.

Change log [NEW]
In this paragraph, are listed modified/updated/unchanged chapters compared to the
first version of the deliverable

Reason for change Issue Revision Date

Updated version for gatekeeper
architecture

2 0.1 05/11/2021

Updated ‘Pilots and applications
requirements’, ‘Architecture’ and
‘Adopted semantic models’ of the ‘Data
Federation & Design’ paragraph

2 0.1 09/11/2021

Updated paragraphs ‘Apache Camel’ and
‘Data Converter’ related to the ‘GK-
Integration Engine’

2 0.2 12/11/2021

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 14

Updated information on ‘GK-FHIR Server’
and on ‘Data Federation & Integration
Dockerization’

Added new paragraphs about the
deployment environments related to Data
Federation (i.e. ‘Platform description:
OpenShift’, ‘GK FHIR Server and GK RDF
Watcher deployed on HPE Data Centre’)

Updated ‘Deployment Scenarios’

2 0.2 15/11/2021

Added description of the ‘Interaction
between Data Federation and Kafka’

Added information about new
‘Component Interaction and Integrations’
such as interactions and integrations with
HCP, CSS, Medisantè IoT Connector, and
so on.

2 0.3 18/11/2021

Added information about ‘Web Console’
related to the GK-IE, GK-RDF Watcher,

Added information about the ‘Data
Converter’

Added information about the ‘Source
Code’

2 0.3 23/11/2021

Added description of the ‘GK Integration
Engine deployed on HPE Data Centre’

Added description of the ‘RDF4J
Workbench deployed on HPE Data
Centre’

Added information about the ‘Pilot needs’
and the description of the ‘CI and CD for
Data Federation: Jenkins’

2 0.4 26/11/2021

New Appendix sections are added in
order to complete information within the
deliverable

2 0.4 1/12/2021

‘Requirements’ completed with the Open
Callers information

Updated figures according to the overall
changes

2 0.5 3/12/2021

Added information on OKD 2 0.6 6/12/2021

Updated information on pilots’ needs 2 0.6 9/12/2021

Update the whole Section I 2 0.6 15/12/2021

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 15

Added paragraphs ‘Interaction and
integration with Medisantè IoT Connector’
and ‘Interaction and integration with
Activage gateway’

2 0.7 15/12/2021

Added paragraphs ‘Interaction and
integration with HealthCloudProxy (HCP)’,
‘Interaction and integration with Aragon
(SALUD) Application’, ‘Interaction and
integration with Poland Application’

2 0.7 17/12/2021

Completed Section I, Section II and
Section III

2 0.8 20/12/2021

Document improvements 2 0.8 29/12/2021

Version ready for internal review 2 0.9 29/12/2021

Integration of comments provided by W3C 2 0.9 30/12/2021

Version ready for quality check review 2 0.9 20/01/2022

Integration of technical comments
provided by quality check

2 0.9 10/02/2022

Final version 2 1.0 14/02/2022

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 16

1 Data Federation and Integration v2:
Overview, requirements, design

This chapter presents the updates implemented for the Data Federation and Integration.

Such updates are the results of a synthesis of the outputs coming from D3.1.2 from one
side and of the conclusions arisen during the bi-weekly phone calls in WP4.

1.1 Position of Data Federation & Integration into
Gatekeeper Architecture [UPDATED]

The Data Federation and Integration (DFI) is one of the core components described in
deliverable D3.2. Its purpose is twice: (i) to offer an easy modality to enable external
heterogeneous data sources to send their data by harmonizing such data against common
semantic models selected by the project (e.g. HL7 FHIR) and (ii) to allow the other “Thing”
(e.g. the Integrated Dynamic Intervention Services of WP5 or even external applications)
to access such data. A representation of this flow is shown in Figure 1.

Figure 1 GATEKEEPER Architecture

It is worth to mention that the DFI is itself an aggregation of WoT, as it will be clarified in
the next sections. Consequently, “Thing(s)” will be exposed and accessible, by the other
components, exclusively through the interaction with the Thing Management System
(TMS). Such mediated access also guarantees the respect of the authentication and
authorization policies since the TMS performs security check (interacting with the
Gatekeeper Trust Authority – GTA – component) each time an access to a GK Thing is
requested.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 17

1.2 Pilots and applications requirements [UPDATED]
The goal of this section is to provide the updated requirements affecting the GK
Integration Engine. Most of the requirements have already been collected and described
in the first version of this document but new ones have been discovered and requested
by the pilots, involved in the project, during the second year.

The next section describes the requirements collected in these two years of the project
detailing the ones listed in the first version of the document and the ones discovered in
this second year.

 Requirements [UPDATED]
In this section will be briefly described the requirements affecting the whole GK
integration process. They have been collected by analysing the DOA description and
considering the new requirements arisen from pilots’ specific requests. Such requirements
represented the baseline for the Data Federation & Integration design activity outlined in
the next sections. Pilots’ requirements, including the new ones, have been collected
during several dedicated phone calls with the involved pilots and by analysing documents
produced in other work packages (e.g. WP3). Before resuming the requirements in Table
9, a brief overview of the analysis pilot per pilot is reported here below.

- Puglia
In the period following the first deliverable version, and taking the pilot’s feedback into
account, new requirements arisen from the Puglia pilot where several external systems
are involved as described during dedicated phone calls and also reported in the pilot
specific architecture (deliverable D1.3). More in detail it is expected the involvement of
three intermediary collecting services, linked to technologies provided by other
GATEKEEPER Partners (namely, Medisantè ELIOT Hub, Samsung Health) as well as by the
Health Cloud Proxy, developed by ENG in the WP7, that integrates market available data
collection platforms (i.e. Google Fit [26], Fitbit [27], iHealth [28] and Biobeat [29]) in order to
gather data from a wider set of IoT sensors, either provided to patients by healthcare
providers or directly acquired by the patients themselves on the consumer market, with
the ultimate goal of consistently presenting such data to the clinicians (mainly GPs, in the
course of the Pilot experiment, but also specialists or hospital clinicians, in perspective),
for them to obtain a richer but uniform view on patients’ health status, meeting the
monitoring needs of various health profiles of elderly citizens in the Puglia Region.

Moreover, other data are expected to be received externally from the HIS (Hospital
Information System) of “Casa Sollievo della Sofferenza” Hospital as outlined in Figure 2, in
order to conduct research on predictive models for diabetes control, that includes both
features available in the HIS and features coming from consumer devices, such as
smartwatches equipped with HR/HRV, physical activity, sleep quality and stress detection
sensors.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 18

Figure 2 Puglia pilot scenario

The Medisantè ELIOT Hub is a Cloud service able to collect and forward (PUSH) data to
other systems. It can be configured in order to register the third part APIs to call for data
forwarding. The Samsung Health based client, is an Android based mobile app able to
retrieve data from sensors (that need to be paired to the app through Bluetooth) store
such data on a local PHR on the smartphone (Samsung Health Store) and synchronize
such data with the Samsung Health Server in the Cloud and send (PUSH) such data to
other systems.

Moving to the CSS’s EHR data sources it is worth to point out as several internal (HIS)
systems could be involved in principles (e.g. RIS/PACS, UMS, ENDOSCOPY etc.). As shown
in the figure an intermediary middleware (Mirth) will be exploited to collect and send
(PUSH) the data to the Data Federation. The input data format is expected to be a custom
model, JSON format, so that the Data Federation is mainly involved (i) to convert the
structure to the specific GK-FHIR profile (ii) and to redirect (ROUTE) the data to the pilot
specific FHIR Server.

Health Cloud Proxy (HCP) is service able to collect data coming from different platform
such as Google Fit, Fitbit, IHealth and Biobeat. The interaction between Data Federation
and HCP is expected to be in PULL modality, i.e., it is needed that Data Federation invokes
the APIs provided by HCP in order to retrieve the different type of data. Every 24 hours,
Data Federation invokes a specific HCP API in the middle of the night to retrieve all data
of all registered patients related the whole day. HCP returns data in its custom data model
so that Data Federation has (i) convert this structure in the specific GK-FHIR profile (ii) and
to redirect (ROUTE) them to the Puglia specific FHIR Server.

About the output semantic model, the pilot aims at building final applications (e.g.
DMCoach for type II diabetes management) relying on state of the art HL7 standard (i.e.
FHIR). It is expected the input data (both IoT and EHR) to be “harmonized” (i.e. converted)
to such semantic model. The data will be also available in a graph DB to fully exploit the
semantic reasoning capabilities that is something useful for the pilot and the intelligent
GK components (i.e. WP5). Finally, about the data location the pilot team has expressed

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 19

the preference that acquired data, through the Data Federation, would be held in a
dedicated cloud cluster.

In the following table, details are resumed regarding the pilot specific requirements arising
from the analysis above.

Table 1 Puglia pilot sources

Source
type

Device Type Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

IOT

BP800 (BP,
Glucose)

Medisantè
ELIOT Hub

PUSH

GK-FHIR
Profile

RDF4J

Dedicated
cluster

BC800 (body
weight and
composition)

Biobeat wrist
device (HR,
BP, SpO2)

Samsung
smartwatch
(HR, physical
activity, sleep,
stress level)
and Activage

Samsung
Health and
Bixby
capsules

PUSH

iHealth,
Biobeat

Health
Cloud Proxy

PULL

EHR - Mirth PUSH GK-FHIR
Profile

RDF4J Dedicated
cluster

- Saxony
Considering the new requirements arisen during dedicated phone calls it is expected the
involvement of the intermediary collecting of Samsung Health in order to gather data from
several IoT sensors and data coming from the proprietary Saxony application containing
data collected by the response of several questionnaires. The interaction with the Data
Federation is shown in the Figure 3.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 20

Figure 3 Saxony pilot scenario

More in details, data coming from Saxony application are sent to Data Federation &
Integration component by means PUSH modality invoke specific REST API provided by
this component already in GK-FHIR format. Such data can be stored in the FHIR Server
component without any transformation process.

Data coming from Samsung devices are collected by Samsung Health and forwarded
(PUSH) to Data Federation & Integration that converts them into GK-FHIR format based on
the specific FHIR-Profile developed in the task 3.5.

The data need to be also available in a graph DB to fully exploit the semantic reasoning
capabilities that is something useful for the pilot and the intelligent GK components (i.e.
WP5).

In the following table, details are reported about the device name, intermediate gateway
involved and main expected interaction modality.

 Table 2 Saxony pilot sources

Source
type

Device Type Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

IOT

Samsung
Smartphone

Samsung
Health PUSH

GK-FHIR
Profile RDF4J

Dedicated
cluster

Samsung
Tablet

Samsung
smartwatch
(HR, physical
activity,
sleep, stress
level)

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 21

EHR N/A SAXONY
Application

PUSH GK-FHIR
Profile

RDF4J Dedicated
cluster

About the output model, the work package 5 aims at building a final Web-based platform
for clinicians relying on the state-of-the-art HL7 standard (i.e. FHIR) to communicate,
receive notifications and for remote monitoring. It is expected the input data to be
“harmonized” (i.e. converted) to such semantic model. The data will be also available in a
graph DB and we will use RFD4J to fully exploit the semantic reasoning capabilities that is
something useful for the pilot and the intelligent GK components (i.e. WP5).

Finally, about the data location the pilot team has expressed the preference that acquired
data, through the Data Federation, would be held in a dedicated cloud cluster.

- Aragon
In the Aragon pilot, several external systems are involved as described during dedicated
phone calls and also reported in the pilot specific architecture (deliverable D3.1). More in
detail, it is expected the involvement of only one intermediary collecting service called
Data Extraction that is a module that will be implemented inside the SALUD Application
as outlined in Figure 4.

Figure 4 Aragon pilot scenario

SALUD is an EHR data source that collects and groups data coming from two components:
“LC Patient FROM Collection & Health education” and “MC/HC Telemonitoring APP”. The first
one is used by patients aiming to manage information about their health education while
the second one is a gateway, running on smartphone, that retrieves some data coming
from sensors and devices and forwards such data to SALUD web-app.

SALUD application manages data and information about:

- Patient / participant including the basic personal, demographic and recruitment
data of the citizen.

- Social assessment with basic information regarding social status.

- Habits with information on daily routines.

- Clinical Activity (Hospitalisation) with information regarding admissions to the
Hospital.

- Clinical Activity (Consultations) including information related to consultations in
primary and specialized care.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 22

- Prescribed Medication with information about the drugs prescribed to the patient.

- Clinical variables values, including information on vital signs capture values

- Symptoms representing information about the existence and/or the intensity of
symptoms

- Forms and questionnaires (e.g. PROMS)

- Comorbidities additional pathologies that belong to episodes active in the patient
EHR that are different from the main disease.

As shown in the Figure 4, a direct interaction with the GK platform is not expected, instead
a Data Extractor engine, deployed inside SALUD application, is used to send data to the
Data Federation & Integration. Such engine extracts specific data from the SALUD EHR
and sends to DFI by mean PUSH modality. The input format is expected to be in custom
JSON or XML representation, in this pilot, so that the DFI will be mainly involved in (i)
adapting the structure to the specific GK-FHIR profile and (ii) redirecting (ROUTE) the data
to the specific FHIR Server pilot.

About the output semantic model, the pilot aims at building final applications (e.g. machine
learning algorithms) relying on the state of the art HL7 standard (i.e. FHIR). It is expected
the input data to be “harmonized” (i.e. converted) to such semantic model. The data need
to be also available in a graph DB to fully exploit the semantic reasoning capabilities that
is something useful for the pilot and the intelligent GK components (i.e. WP5).

Finally, in respect to the data location, the pilot team has expressed the intention of
evaluating the opportunity to send out their data from their owner premise in order to feed
GK systems. In the case acquired data, through the Data Federation, would be held in a
dedicated cloud cluster unless there will be a strong justification to have data in a shared
cloud cluster.

In the following table, details summarise the pilot specific requirements arising from the
analysis above.

Table 3 Aragon pilot sources

Source
type

Device Type Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

EHR N/A

ARAGON
APPLICATION

PUSH
GK-FHIR
Profile N/A

Dedicated
cluster

- Greece
About the Greece pilot, the only interaction with Gatekeeper ecosystem is between
Greece Application and Data Federation & Integration. The Greece application will collect
data from several sensors and EHR applications and will forward them to DFI using the
PUSH modality in FHIR version 3 model as shown in Figure 5. This pilot required, for the
Gatekeeper project, to use FHIR version 3 and not FHIR version 4.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 23

Figure 5 Greece pilot scenario

About the output semantic model, Greek pilot aims at building final applications relying
on state of the art HL7 standard (i.e. FHIR v3). Finally, about the data location the pilot team
has expressed the preference that acquired data, through the Data Federation, would be
held in a dedicated cloud cluster.

In the following table, details summarise the pilot specific requirements arising from the
analysis above.

Table 4 Greece pilot sources

Source
type

Device
Type

Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

EHR N/A
GREECE EHR
APPLICATION PUSH FHIR v3 N/A

Dedicated
cluster

Greece will send its data already compliant with the GK-FHIR Profile in form of FHIR dstu3.

- Basque country
For the Basque country scenario is expected the involvement of several applications that
will send data to Data Federation component by means PUSH modality. Apart from the
data coming from Samsung devices that will be converted into FHIR resources by DF
components, the other data will be sent already compliant with the GK-FHIR Profile so no
transformation/adaption is needed for such type of data as shown in Figure 6. In particular,
Sense4Care sends Holter STAT-ON data, IBERMATICA pushes data collected from Abbott
devices and Biobeat provides its own devices data. Furthermore, the MAHA application
collects and shares data related to questionnaires for user self-assessment, such as the
mHealth Application Usability Questionnaire (MAUQ), as well as his/her physical activity
data (steps, sleep, etc.) while MYSPHERA integrates directly data from GK-Gateway.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 24

Figure 6 Basque Country pilot scenario

Then, data coming from Basque Country application are forwarded (PUSH) to Data
Federation and persisted in the FHIR Server. Finally, in the case of acquired data, through
the Data Federation, these will be held in a dedicated cloud cluster unless there is a
strong justification for having data in a shared cloud cluster. In addition, a subset of these
data are used by the MYSPHERA AI platform.

 Table 5 Basque Country pilot sources

Source type Device
Type

Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

IOT

N/A
Samsung

Health

PUSH
GK-FHIR
Profile N/A

Dedicated
cluster

Holter
STAT-ON

Sense4Care

Abbott
devices

IBERMATICA

Biobeat
devices Biobeat

External
Health

Applications
N/A

UPM
Questionnaire

PUSH
GK-FHIR
Profile N/A

Dedicated
cluster MYSPHERA

GK-Gateway

- Cyprus

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 25

In the Cyprus pilot, the only interaction with Gatekeeper ecosystem is between Cyprus
Application and Data Federation & Integration. The Cyprus application will collect data
from several sensors and EHR applications and will forward them to DFI using the PUSH
modality in FHIR version 3 model as shown in Figure 7. This pilot required, for Gatekeeper
project, to use FHIR version 3 and not FHIR version 4.

Figure 7 Cyprus pilot scenario

About the output semantic model, the pilot aims at building final applications relying on
state of the art HL7 standard (i.e. FHIR v3). Finally, about the data location the pilot team
has expressed the preference that acquired data, through the Data Federation, would be
held in a dedicated cloud cluster.

In the following table, details are resumed regarding the pilot specific requirements arising
from the analysis above.

Table 6 Cyprus pilot sources

Source
type

Device
Type Gateway

DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB Data Location

EHR N/A Cyprus
Application

PUSH Fhir v3 NO Dedicated
cluster

Cyprus will send its data already compliant with the GK-FHIR Profile in form of FHIR dstu3.

- Poland
Figure 8 shows the scenario of the Poland pilot based on the pipeline defined in the
deliverable 3.1.2 and the phone call had with the pilot. It will use a custom EHR Poland
application that will send data by means PUSH modality to Data Federation in its custom
model representation. Data Federation has to convert such raw data to GK-FHIR format
based on the profile defined in task 3.5. Once these data are transformed to FHIR, they are
persisted in FHIR Server so they are available to the task involved in work package 5.

About the output semantic model, the pilot aims at building final applications (e.g. machine
learning algorithms) relying on the state of the art HL7 standard (i.e. FHIR). It is expected
the input data to be “harmonized” (i.e. converted) to such semantic model.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 26

Figure 8 Poland pilot scenario

In the following table, details are resumed regarding the pilot specific requirements arising
from the analysis above.

Table 7 Poland pilot sources

Source
type

Device
Type

Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data Location

EHR N/A
Poland

Application PUSH GK-FHIR NO
Dedicated

cluster

- Milton Keynes
In the Milton Keynes pilot, several external systems are involved as described during
dedicated phone calls and also reported in the pilot specific architecture (deliverable
D3.1.2). More in detail, it is expected the involvement of the intermediary collecting
services Samsung Activage in order to gather data from several IoT devices, smartphones
and the Robotic platform Human activities.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 27

Figure 9 Milton Keynes pilot scenario

The Samsung Activage is a cloud based application able to retrieve the sensors data from
the Samsung Health Cloud and send (PUSH) such data to other systems. Samsung
Activage is also used to retrieve data coming from the robot platform, by means a robot
event logger module, and forward (PUSH) such data to other systems (in the case of
GATEKEEPER to DataFederation & Integration module). Data will be sent already
compliant with GK-FHIR Profile.

Milton Keynes pilot is very interested in adopting HL7 FHIR standard, that is the final model
that will be used. Data need to be provided in a graph DB, to fully exploit the semantic
reasoning capabilities that is something useful for the pilot and the intelligent GK
components (i.e. WP5).

Finally, about the data location, the pilot team has not expressed any preference that
acquired data, through the Data Federation, are held or not in a dedicated cloud cluster.
In Table 8, details summarise the pilot specific requirements arising from the analysis
above.

Table 8 Milton Keynes pilot sources

Source
type

Device Type Gateway DFI
Interaction

Modality

Output
Semantic

Model

Graph
DB

Data
Location

IOT

Samsung
smartwatch
(HR,
physical
activity,
sleep, stress
level)

Samsung
Activage PUSH

GK-FHIR
Profile YES

No
preference
about the
use of a

Dedicated
cluster Robot

platform
Human

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 28

activities
Environment
data remote
control

It is worth to mention that for some pilots (e.g. Hong Kong, Singapore) the requirements
needs will be tracked exclusively by Trello board (instantiated within the context of WP7).
The information available (at time of writing this document) from such tool, are
summarized, along with the other pilots, in the tables below while details about data flow
and data sources are not reported here since under finalization

Table 9 Pilots’ requirements-1

 Puglia Saxony Greece Aragon Milton
Keynes

Cyprus Poland Basque
Country

Data
acquisition
modality:

PUSH

Data
acquisition
modality:

PULL
 N/A N/A N/A N/A N/A N/A N/A

External
system: IoT N/A N/A N/A

External
system:

EHR N/A

Output
semantic

model: FHIR

Dstu3

Dstu3

Output
semantic

model:
SAREF/OT

HER

N/A N/A N/A N/A N/A N/A N/A N/A

Data
availability
in a graph

DB
 N/A N/A N/A N/A

Dedicated
data

repository N/A N/A N/A N/A N/A

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 29

Table 10 Pilots’ requirements-2

 Bangor COVID-19 Singapore Hong Kong Taiwan

Data
acquisition
modality:

PUSH

Data
acquisition
modality:

PULL
N/A N/A N/A N/A N/A

External
system: IoT N/A N/A N/A N/A N/A

External
system:

EHR
N/A N/A N/A N/A N/A

Output
semantic

model: FHIR

Output
semantic

model:
SAREF/OT

HER

N/A N/A N/A N/A N/A

Data
availability
in a graph

DB
 N/A N/A N/A N/A

Dedicated
data

repository

1.3 Data Federation & Design v2 [UPDATED]
 Architecture [UPDATED]

Data Federation and Integration aims to integrate data coming from a different and
heterogeneous data source in a common selected data model harmonizing their
representation in order to create a single view of such data that can be accessed from
external applications, i.e. from “Thing” developed in the scope of work package 5.

Figure 10 shows an update of the general overview of such component, it is able to accept
data coming from a different source (i.e. devices, sensors, electronic health records, and
so on) in a different format (json, xml, etc.) and store them in a common repository. It
provides some APIs to allow this integration. The selected ontologies are HL7-FHIR v4 [10]
and SAREF. Data can be retrieved in FHIR and RDF format [15], but in this updated version
it also supports the sending of stored data on a Kafka channel in order to support Big Data
Analytics environments.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 30

Figure 10 Data Federation & Integration Thing: Overview

DFI offers a utility to harmonize data against the GateKeeper defined FHIR Profile coming
from task 3.5. In details:

• It offers REST APIs (southbound) to acquire data from IOT/EHR data source to GK-
FHIR Profile compliant data.

• It offers REST API (northbound) to access the converted data for immediate
integration in external component or application.

Figure 11 Data Federation & Integration pipeline

As shown in Figure 11 DFI provides some REST APIs that are able to accept data coming
from different sources. Collected data are converted in FHIR and RDF representation, by
a set of conversion routines, and persisted in a common repository. Stored data can be
retrieved, in FHIR and RDF format, by means REST APIs.

The architecture of Data Federation & Integration in this version of the deliverable is
updated and currently it consists of four main components gk-integration-engine, gk-fhir-
server, gk-rdf-watcher and gk-rdf4j. Logically, it is a composition of three “Things” each
one providing its Thing Descriptor (TD) as shown in Figure 12 and a component that
supervises and facilitates the RDF conversion. Such TDs describe the three distinct APIs
exposed by this component.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 31

Figure 12 Data Federation & Integration Thing

The internal components, updated in this version with RDF-watcher, are:

• gk-integration-engine

• gk-fhir-server

• gk-rdf-watcher

• gk-rdf4j

each one with specific features and responsibilities.

In Figure 13 an updated schema of how to use DFI Thing is shown. In detail:

Figure 13 How to use Data Federation & Integration Thing

gk-integration-engine provides the southbound APIs to receive raw data from external
data sources, acquired data are converted to FHIR/RDF representation according to
preload conversion rules, finally converted data are sent to gk-fhir-server and rdf4j
through of the APIs that they provide.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 32

This component offers two kinds of modalities for the interaction called PUSH and PULL.
With the modality PUSH external applications have to invoke the gk-integration-engine
APIs in order to send data to DFI instead with PULL modality the DFI invoke APIs offered
by external applications in order to share data with DFI. With the latter modality it is clear
the external application should provide the APIs that can be called by the DFI.

gk-fhir-server is a web server compliant to FHIR standard that provides the set of
operations to retrieve, store, update and delete FHIR Resources. Data are persisted in a
dedicated repository. It offers a set of northbound APIs that can be invoked by external
application to retrieve persisted information according to FHIR specification in JSON and
XML format. How we will discuss in this document, through the FHIR interceptor, we are
able to store the received resources in a series of JSON files to enable their conversion by
the RDF Watcher. At the same time, always through interceptor, we can set a Kafka
channel and publish all the received resources also on a pre-setup channel in order to
able big data analytics processes.

gk-rdf-watcher, the new component described in this version of the deliverable, is a
Linux-based process that listens to every change that occurs against a folder shared with
the gk-fhir-server; more in detail, it takes all the JSON files stored by the FHIR Server and
manages the conversion and sending to the RDF Server.

gk-rdf4j provides a set of APIs to store, update and retrieve data in RDF format offering a
set of utilities to execute SPARKQL queries. It has a dedicated repository where data are
stored in RDF representation.

All these modules are described in detail in a dedicate section.

Data Federation is integrated within the TMS that implements an API gateway
microservice and load balancer pattern. Figure 14 shows the sequence diagram that
involves the TMS, GTA and Data Federation. Following the figure, the TMS offers an API
management service that sits between a client (pilot application) and a collection of Data
Federation back-end services. It mitigates access to the Data Federation after
authorization provided by the Keycloak service [11] offered by the GTA.

In relation to the Data Federation, the TMS acts as a reverse proxy to accept all API calls,
aggregate the various services required to manage them and return the appropriate
results.

The APIs associated with Data Federation services, such as GK Integration Engine, GK-
FHIR Server and GK FHIR RDF, are deployed through the TMS which acts as an API
gateway. Typically, API gateways handle common tasks used on an API service system,
such as user authentication, replication for high availability, and statistics.

In Gatekeeper, authentication and statistics are offered by the GTA through the keycloak
component and the Audit blockchain service, while replication for high availability is
offered by the Open Shift platform.

Basically, an API service accepts a remote request and returns a response. But when
hosting APIs on a large scale, the scenarios that can occur are varied and managing them
can be complex.

To prevent the API from being over-exploited or used without proper permissions, it is
necessary to implement an authentication mechanism and multiple request management
through load balancers. Also, to understand how developers use APIs, analytics and
monitoring tools are needed.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 33

In a microservices-based architecture, this means that a single request could require calls
to several different services before providing the result to the client. Another important
aspect is the dynamicity of the APIs, some new API services can be added and others
removed, so it is needed to ensure that clients can always find them in the same place.

Providing clients with a simple and reliable experience, regardless of this complexity, is
an important factor to ensure in a microservices-based architecture. The TMS offers a way
to decouple the client interface from the Data Federation back-end implementation.
When a client sends a request, the TMS splits it into multiple requests, routes then where
needed, processes responses, and tracks each operation. It is the heart of the API
management system and offers secure access to the Data Federation by intercepting all
incoming requests and sending them through the gateway, which processes a series of
necessary functions.

In Gatekeeper, the TMS provides interfaces to authentication, routing, high availability,
analytics, policies, alerts, and security.

Figure 14 Data Federation & Integration flow

Figure 14 is updated with the new interactions with the TMS component and it shows the
steps followed by Data Federation & Integration to persist data coming from an external
application using the PUSH modality. The pilot application that wants to send data to DFI
asks the permission token to the TMS module. TMS module, then, forwards the client_id,
grant_type and client_secret related to such pilot to the keycloak to verify if the passed
values are correct and returns an access token to TMS. Now, the TMS with valid token is
able to make a request towards the gk-integration-engine passing the received token (by
keycloak) and raw data that wants to persist into DFI repository. gk-integration-engine,
based on pilot name, selects the right routine to convert custom raw data to FHIR standard
according to the GK-FHIR Profile. Transformed FHIR data are sent to gk-fhir-server

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 34

invoking the APIs that it provides. gk-fhir-server persists received data in dedicated FHIR
repository, convert them to RDF format and sent such data to gk-rdf4j that persists them
into its repository. A response message is returned to the pilot.

 Adopted Semantic models [UPDATED]
As already described above, Data Federation & Integration aims to integrate and
harmonize data coming from heterogeneous data source, registered in GateKeeper
platform, including EHR, wearable device data sources, home-based sensor data and
sensor activity sensor data, thus, to producing a Health (semantic) interoperability
repository enabling the development of advanced services to focus on scenarios and
requirements provided by the pilots involved in the project.

Based on the analysis performed during the remote calls scheduled with pilots (also
highlighted in Table 9) the main semantic model adopted is HL7-FHIR. Moreover, to
ensure semantic interoperability, in the current version of this deliverable a controlled and
shared vocabulary has been applied, also based on the use of appropriate terminologies
(s. A.1). Such terminology models are built to meet the specific needs of a specific domain,
where their nature is structured by vocabularies. Several terminological sources should
be available to a community, in order to foster and ensure consistency between the data
and information exchanged. Furthermore, the ability to provide coherent representations
and the possibility of having access to a wide range of terminologies allows accelerating
the interoperability process. Within clinical processes, medical terminology plays a very
important role. In fact, it represents a central service for the provision of semantic
interoperability between different systems and applications. In particular, appropriate
terminology can be used to represent the information contained in clinical databases, data
resulting from observations produced by qualified personnel in a specific domain,
observations deriving from meetings with patients, as well as health guidelines, expert
systems, and medical knowledge. In fact, terminologies provide a means to organize
information and serve to define the semantics of the latter, using coherent mechanisms
that can be computed by a machine. In addition, they are extensible, meaning that the
data described by a particular collection of terms can, in turn, incrementally collect
additional terms, which will then be reclassified and re-indexed. Summarizing, therefore,
the main purposes for which it is necessary to use standard terminologies concern the
ability to provide consistent meaning, the need to promote shared understanding, the
ability to facilitate communication with humans, the need to enable comparisons and data
integration and the possibility of guaranteeing the portability and sharing of Electronic
Health Records (EHR).

1.3.2.1 Process to define GK HL7 FHIR Implementation Guide [UPDATED]

In order to build a common semantic and integrated GK repository, the DFI framework has
to know which resources of FHIR standard must be used together with the selected
vocabularies to represent information coming from the several pilots’ applications. To
reach this goal inside the scope of the Gatekeeper project has been designed and applied
a specific integration and interaction process that has involved tasks 3.4, 3.5 and 4.4. During
the period the deliverable refers to, such joined work proceeded in order to gather the
new data models (T4.4) to acquire them within the GK-FHIR Profile (T3.5) and finally, to
produce new custom transformation rules.

Task 3.4, as documented by the relative deliverable, has prepared a template to collect
data models and vocabularies used by pilots in their applications. Collected and filled

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 35

templates are used by the task 3.5 to build a set of FHIR logical models continuously
harmonized for considering the input progressively received by task 3.4. The output of
task 3.5 is the GK-FHIR Profile and more, in general, the GK HL7 FHIR implementation
guide (IG) [2] that is used by task 4.4 to convert heterogeneous data coming from pilot
application to the GK-FHIR data model. An HL7 FHIR implementation guide (IG) is “a set of
rules about how FHIR resources are used (or should be used) to solve a particular problem,
with associated documentation to support and clarify the usage1.” A FHIR IG, at the moment
of writing the second version of the deliverable, includes very different kinds of artefacts
(Figure 15), as FHIR logical models (Figure 16), FHIR API conformance resource; FHIR
profiles (Figure 17), and many other FHIR and non-FHIR artefacts.

Figure 15 FHIR IG: an example of the Artifact summary

1 https://www.hl7.org/fhir/implementationguide.html

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 36

Figure 16 FHIR IG: an example of Logical Models

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 37

Figure 17 FHIR IG: an example of Profiles

By the way, the focus of the Gatekeeper FHIR IG (Figure 18) is unchanged and is on the
data space, thus logical models, profiles, terminologies, and their relationships are
specified for GateKeeper project.

Figure 18 Gatekeeper Implementation Guide (from task 3.5)

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 38

Figure 19 shows the interaction process updated with RDFWatcher component to define
the Gatekeeper data models, based on FHIR and the relative selected terminologies, that
is used to persist and retrieve data from Data Federation & Integration module.

Figure 19 Gatekeeper Data Models definition process

GK-FHIR Implementation guide, more in detail profiles and vocabularies, is a very
important input for Data Federation & Integration since it is used to build the conversion
rules that are applied by transformers, when external applications invoke the Southbound
APIs, to convert pilot data to GK-FHIR profile. Moreover, even if some pilot sends their data
already in FHIR format, such data must be adapted and converted to GK-FHIR profile in
order to be harmonized with data coming from other pilots as discussed below (s.2.1.4).

 Declarative approach
One of the core key components of Data Federation & Integration is gk-integration-engine.
This module exposes APIs that are able to acquire data from external heterogenous data
sources and “harmonizing” such data to be compliant to GK-FHIR-Profile and the other IoT
ontologies selected by the GK project. The heterogeneous data source can be both
electronic health record system and IoT devices. Collected data by gk-integration-data
must be converted, according specific rules, to GK-FHIR-Profile or some ontology and
then sent to the FHIR or RDF repository. In order to perform these conversions, the gk-
integration-engine contains a conversion utility that can work in two different approaches:
declarative approach and programmatic approach. This section is focused on the
declarative approach.

Figure 20 shows the design data model for the Data Source and for the Converter. Data
Source is an abstract entity representing a generic source that can be specialized in two
subclasses representing the concrete sources, EHR and IoT. EHR data source represents
the electronic health records containing data, for example about the clinical status of a
person, generated by hospital or health care system while IoT data source represents data
that are generated by IoT devices such smartwatch, sensors and so on. Such data differs
from the one generated by health electronic health records due to the nature of the
information that they manage. IoT devices are used to perform some measurement, with
a certain frequency, on a subject and forward result to an application or gateway via
Bluetooth.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 39

Figure 20 Data Source and Converter model

Each Data source is associated with a specific converter with a relation one to one, this
design enforces to have a converter for each instance of data source. Converter, in similar
way of data source, is an abstract entity that can be specialized to a Java Convert o RML
Rule. The RDF Mapping language (RML) [16] is a generic scalable mapping language
defined to express rules that map data in heterogeneous structures and serializations to
the RDF data model. RML deals with the mapping definitions in a uniform, modular,
interoperable and extensible fashion. RML is defined as a superset of the W3C-
recommended [21] mapping language, R2RML, that maps data in relational databases to
RDF. In RML, the mapping of data to the RDF data model is based on one or more Triples
Maps that defines how the triples will be generated. A Triples Map defines rules to
generate zero or more RDF triples sharing the same subject. A Triples Map consists of a
Logical Source, a Subject Map and zero or more Predicate-Object Maps:

• A Logical Source consists of (i) a reference to input source(s), (ii) the Reference
Formulation to specify how to refer to the data and (iii) the iterator that specifies
how to iterate over the data. The following reference formulations are predefined
but not limited: ql:CSV, ql:CSS3, ql:JSONPath, rr:SQL2008 and ql:XPath.

• The Subject Map consists of the URI pattern [20] that defines how each triple's
subject is generated and optionally its type. The references to the input data occurs
using valid references according to reference formulation specified at the Logical
Source.

• Triples are generated using Predicate Object Maps. A Predicate Object Map
consists of Predicate and an Object Map(s). A Predicate Map specifies how the
triple's predicate is generated. An Object Map specifies how the triple's object(s)
are generated.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 40

The output of RML is a sematic knowledge that can be persisted in sematic repository. An
example in Figure 21 is provided to show how RML rules can be written to produce a
sematic representation raw data.

Figure 21 Sensor raw data to Semantic knowledge

On the left of the Figure 21 there is an example of raw representation of weather
temperature in JSON format containing information about time zone, sensorID, name of
the city where data are related on (Shuzenjii), coordinates (longitude and latitude), external
temperature, minimum and maximum temperature, pressure, and humidity. The goal is to
convert the json representation of temperature in a semantic model by mean RML
declarative rules language. A preliminary activity to perform this task is to select the
ontologies that should be used for semantic representation (as already described, an
ontology is a formal representation model of the reality and knowledge). It is a data
structure that allows the description of the entities (objects, concepts, etc.) and their
relationship in a specific knowledge domain. An ontology is the explicit formal description
of the concepts of a domain, that is, a model that allows to represent reality (being) in the
domain in question, in the form of a set of objects and relations (class of objects).

The ontologies selected to represent the temperature data of the example are sosa2 and
iot3 for the iot schema, qudt4 for the representation of a quantity and qutunit5 to represent
of the unit of measure as shown in Figure 22.

2 http://www.w3.org/ns/sosa/

3 http://iotschema.org/

4 http://qudt.org/1.1/schema/qudt#

5 http://qudt.org/1.1/vocab/unit#

http://iotschema.org/
http://iotschema.org/
http://iotschema.org/
http://qudt.org/1.1/schema/qudt
http://qudt.org/1.1/schema/qudt
http://qudt.org/1.1/schema/qudt

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 41

Figure 22 Sensors ontologies

To continue, the right side of the Figure 21 shows the desired target semantic knowledge
in a graph representation of the temperature, by means the selected terminologies,
represented in the left side of the same figure in json format.
Black ovals represent concepts of the selected terminologies while yellow rectangles
represent relations among the different concepts. Arrows are the navigability directions.
In detail the device is a sensor (sosa: Sensor) that observes (sosa:observes) a temperature
(iot:Temperature); it makes an observation (sosa:madeObservation) and the result is an
observation (sosa:Observation) that has a result (sosa:hasResult) of type quantity
(qudt:QuantityValue). Quantity consists of a numeric value (qudt:numericValue) of type float
(xsd:Float) and a unit of measure (qudt:unit) of type degree Celsius (qutunit:DegreeCelsius).
By means RML, it is possible to write RML rules that analyses the JSON raw data and
provides as output the sematic model described above. Figure 23 shows the rules in RML
syntax to produce the semantic model representation.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 42

Figure 23 Example of RML rule specification for a sensor raw data

Data Federation & Integration also includes a conversion utility that takes in input a raw
format (in the case of the example JSON) and the relative RML rules and provides as
output the semantic representation, in RDF format, of the source raw data. Rules must be
written according to the source raw input and the selected terminologies. Output of the
application of the RML rules for the JSON representing temperature is shown in the Figure
24.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 43

Figure 24 Temperature semantic representation in RDF format

As it is possible to see from the Figure 24, it is the same representation of the graph shown
in Figure 21. It is defined a prefix for each selected URL terminology, this means that each
terminology can be referred by the prefix without using the whole URl, this syntax
improves the readability of the code. Device with id 1851632 is a sosa Sensor that made a
sosa Observation with id _:0. Observation with id _:0 is a sosa:Observation that has a
quantity value result referred by id _:1. QuantityValue consists of a numeric value and a
unit. The value of numericValue is 281.52 of type float while the quantity unit is degree
Celsius. Last line of code says that the sensor having id 1851632 observes a temperature.
From the view of the model represented by Figure 20 an instance of Converter class is a
file containing RML rules that are able to convert data in a semantic representation
associated to a specific source that can be an EHR data source or IoT data source.

 Programmatic approach v2
Previous section describes the specialization of Converter class in RML rules while this
section describes the converter when it is specialized in a Java routine. As already said to
each data source can be associated one Converter that can be a Java Converter or a RML
Rule. Figure 25 shows data model of the Java Converter offering the possibility to add a
new transformation Java class to a specific data resource. New class will be added by
hand in the actual release of the Data Federation & Integration.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 44

Figure 25 Java Converter Model

Java Converter model consists of an abstract class named AbstractConverter that contains
two attributes semanticModel of type SematicModelsEnum and outputSyntaxFormat of
type OutputSyntaxFormatEnum. Attribute semanticModel represents the output format
ontology that can be FHIR, SAREF and SSN while attribute outputSyntaxFormat represents
the format of the output data that can be JSON, RDF or XML. When a new converter for a
specific data source, belonging to a specific pilot, the concrete implementation of the
class AbstractConverter must be provided inside new package containing the name of the
pilot followed by the name of the application that is used. Figure 25 shows an instance of
implemented converter for data collected by Samsung gateway (class in green color) that
is used by Saxony pilot.
Each ConverterImpl class must selected both the output data format (JSON, XML, RDF)
and adopted ontology (FHIR, SAREF and SSN) and it has to implement methods of the
interface IConverter<T extends IDataBundle<T>> together with the DataModel
representing the Java beans of the incoming data. IConverter<T extends IDataBundle<T>>
offers three methods:

• convertFromHttpBody() this method contains the logic to unmarshal data from
string to Java Object.

• getSemanticModel() that returns the selected semantic model.
• getOutputFormat() that returns the format of output model.

Each DataModel must implement the interface IDataBundle<T>.
To facilitate the implementation of a new converter, an ECLIPSE sample project has been
provided together with a guide containing the instruction to implement a new Java
converter; reading such guide and modifying the ECLIPSE sample project it is possible to
develop and plug a new Java Converter in easy way.
The complete guide is reported in A.4 and A.5.

1.4 Interaction with Big Data Platform Design (T4.3)
[NEW]

During the period this deliverable refers to an architectural pattern has been discussed
and agreed with HPE in order to forward the data properly converted to the GK-FHIR
Profile, to the Big Data Infrastructure in order to make the data available to the AI
development environment built on top of the Big Data Infrastructure itself. Such pattern is
based on a publish\subscribe mechanism relaying on Apache Kafka integration layer.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 45

Apache Kafka is an open-source distributed event streaming platform used by thousands
of companies for high-performance data pipelines, streaming analytics, data integration,
and mission-critical applications. Its core capabilities can be summarised as high
throughput, scalability, permanent storage and high availability. Furthermore, Kafka is
offering a set of functionalities in order to manage process streams and integrations of
different sources such as the Kafka’s out-of-the-box Connect interface. In fact, it is able to
integrate with hundreds of event sources and event sinks including third-party products
such as Maria DB, JMS, Elasticsearch, AWS S3, and more; or the built-in stream processing
that provides process streams of events with joins, aggregations, filters, transformations,
and more, using event-time and exactly-once processing.

Finally, Kafka is trusted by thousands of organisations also for its ease of use.

 Interaction between Data Federation and Kafka [NEW]
The Data Federation, after every resource’s storage stage, if the Kafka channel is enabled,
sends the received bundle or resource to the corresponding Kafka channel.

We have one channel for bundle transfer and one channel for single resource
transportation. These channels can be used by the big data analytics process listening for
new data sent by the FHIR Server.

For the Kafka integration process completion into the FHIR Server lifecycle, we designed
and developed a FHIR interceptor. The FHIR interceptors are the mechanism useful for
FHIR event acquiring; they enable the registration of some additional execution logic fired
when a particular server event occurs. There are many events captured during the FHIR
“resource” lifecycle like the one we used:
SERVER_PROCESSING_COMPLETED_NORMALLY; this event is called after all processing
is completed for a request, but only if the request completes normally without any
problems.

When a bundle or resource is received by the FHIR Server, after their storage stage, their
JSON representation is published over the correct Kafka channel. After that, all the
subscribers can receive the sent information and use them for their own needs.

Figure 26 Schema of interaction between Data Federation and Kafka

1.5 Component Interaction and Integrations [NEW]
Data Federation & Integration is naturally linked with other GK Thing. In the second year
of the project, HPE has provided the whole infrastructure where all applications involved
in Gatekeeper platform must be executed, so ENG has moved the deployment of Data
Federation & Integration from ENG Server to HPE platform. This new scenario has required
new configuration since applications hosted on HPE ecosystem run behind a proxy and

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 46

external system can interact only with a site-to-site connection. The authentication
process is not yet managed by ENG but by the GTA task for this reason this feature is
deleted by Data Federation and managed by task 4.5.

 Interaction and integration with Medisantè IoT Connector
[UPDATED]

Eliot Hub is a IoT device platform to enable connectivity of medical devices with any
clinical system. It simplifies deployment of telemonitoring at scale on the pilot side
providing remote management capabilities. The platform only hosts non-identifiable
patient data based on device number (e.g. IEMI) and pull data based on a direct-to-cloud
approach into any target system used by the physicians – and patients. The platform relies
currently on a limited set of medical devices (CE mark, class I, class II), collecting
periodically the most common vital signs (blood pressure, blood glucose level, weight,
arrhythmia, …). Over time, the number of vital sign and medical devices will increase to
address clinical needs6.

This section describes how the interactions between DFI and Eliot Hub is performed and
tested once the two applications are deployed on HPE platform (and not on ENG Server)
with a security site-to-site proxy connection. Eliot Hub includes a test environment where
it is possible to register an application where to send fake data representing information
coming from the devices that it supports. This test environment has been used to perform
some tests of integration to check if Eliot Hub is able to invoke DFI IOT API hosted on HPE
Server to send data representing measures made with the devices that it supports by
means a site-to-site connection.

On the other side it has been tested if DFI receives correctly data coming from Eliot Hub
framework and if such data can be converted and stored in FHIR and RDF repository
according the GK-FHIR-profile. The hypothesis is that these devices are used by Puglia
pilot.

Since DFI is deployed on the HPE Server behind a proxy, it is reached by external
applications only with a site-to-site connection. All service has been deployed on OKD
platform as Docker containers running in a POD. In order to perform this integration,
following tasks have been performed:

1. Register an organization on Eliot Hub cloud application

2. Add a new user for the organization registered at point 1.

3. Register DFI as a new data source in the section “target systems” of Eliot Hub.

4. Added in DFI a new Java Converter for Puglia pilot and Eliot Hub application.

5. From Eliot Hub application run test executions aiming to send test measurements
to DFI.

6 The portfolio of cellular-based devices will continue to increase according to clinical needs, volume, connectivity
attributes, data security attributes and internal validation.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 47

6. Check if data sent by Eliot Hub reach DFI and they are converted and persisted in
right way both in FHIR and RDF representation according GK-FHIR profile.

Also, in this updated version of the deliverable, Eliot Hub added a new container on its
side in order to integrate a VPN proxy.

Eliot Hub offers a set APIs allowing to register a user, an organization, one or devices and
a target system to which sends collected data by the registered devices. The swagger of
the application is available on this URL https://api-docs.medisante.net/#/.

The first step is the registration of the organization (e.g. Puglia) and the creation of a new
user for such organization. Successful it needs to register the DFI platform as target
system. Following there are information required to register the new DFI system:

• Name of the application, “DataFederation”.

• URL where send data, ”http://gk-integration-engine-gatekeeper-
dev.apps.okd.seclab.local/gkie/IOT/data/puglia/medisante”7. Interface enabling
IOT Medisantè devices, used for Puglia pilot, this API means that data coming from
devices used by Puglia pilot registered into Eliot HUB collector

• Authentication type, “OAuth 2.0”.

• Grant type, “Client credentials”.

• Username.

• Password.

Figure 27 shows the screenshot of the Eliot Hub target system form.

Figure 27 Eliot Hub Target System

7 this URL will be customised according to the pilot’s namespace provided by HPE.

https://api-docs.medisante.net/%23/

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 48

After clicked on save button the new system is registered in the environment test, as
shown in Figure 28.

Figure 28 Eliot Manage page

Once the system is registered it is possible to send fake data to DFI. The supported
devices8 from the test environment are:

• BG800, to measure the level of haemoglobin glucometer.
• BP800, to measure the arm blood pressure and blood glucose level.
• BC800, to measure the body weight.
• BT105, to measure heart rate together with the blood pressure systolic and

diastolic

Each device is assigned a unique identifier, named IMEI, as shown in Figure 29.

8 https://medisante-group.com/devices

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 49

Figure 29 Eliot Hub test devices

Eliot Hub framework produces test data in FHIR v4 JSON representation, such JSON
consists of a Bundle resource containing one or more entry, one for each type of
performed measure represented as FHIR Observation measure. Each Observation
contains the type of measure, the date when it has executed, the value of the measure
together with the unit of measure and finally the identifier of the device that has generated
the measure represented as contained FHIR Device resource. In addition, in this version of
the deliverable, Eliot Hub updated the HL7 data format adding a ‘suggestions’ field.

When Eliot Hub application sends data to Data Federation & Integration, such data are
transformed to GK-FHIR-Profile and stored in the repository in FHIR and RDF format.

Following an example of a piece of information generated by Eliot Hub application for the
device BT105.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 50

Figure 30 Example of data generated by Medisantè device BT105

Figure 31 shows the steps of the integration between the Eliot Hub application and Data
Federation and Integration. In order to perform this integration, it is needed that the DFI is
registered to Eliot Hub collect. After the registration whenever a new measure is
generated by a Medisantè device, used from a patient of a specific pilot, such measure is
shared with Eliot Hub intelligent connector that forwards it (PUSH modality) to DFI as FHIR
Bundle in JSON format. DFI loads the implemented transformer for Medisantè application,

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 51

it transforms data to GK-FHIR Profile and it invokes the API of gk-fhir-server, belonging to
specific pilot, to store arrived data and FHIR and RDF format.

Figure 31 Eliot Hub and DFI integration

In order to stay updated on the operation outcome described above, Eliot Hub added
status response codes for seeing server responses on its frontend application.

 Interaction and integration with Activage gateway [UPDATED]
This section describes how Activage gateway and Data Federation & Integration interact
in order to share data collected by the Samsung Health app, Smarthings, Home
Monitoring (Robot), Health and Home Monitoring (IOT) and UK Questionnaire.

ACTIVAGE is a European Multi Centric Large Scale Pilot on Smart Living Environments [33].
The main objective is to build the first European IoT ecosystem across 9 Deployment Sites
(DS) in seven European countries, reusing and scaling up underlying open and proprietary
IoT platforms, technologies and standards, and integrating new interfaces needed to
provide interoperability across these heterogeneous platforms, that will enable the
deployment and operation at large scale of Active & Healthy Ageing IoT based solutions
and services, supporting and extending the independent living of older adults in their
living environments, and responding to real needs of caregivers, service providers and
public authorities.

The project will deliver the ACTIVAGE IoT Ecosystem Suite (AIOTES), a set of Techniques,
Tools and Methodologies for interoperability at different layers between heterogeneous
IoT Platforms and an Open Framework for providing Semantic Interoperability of IoT
Platforms for AHA, addressing trustworthiness, privacy, data protection and security. User-
demand driven interoperable IoT-enabled Active & Healthy Ageing solutions will be
deployed on top of the AIOTES in every DS, enhancing and scaling up existing services,
for the promotion of independent living, the mitigation of frailty, and preservation of quality
of life and autonomy. ACTIVAGE will assess the socio-economic impact, the benefits of
IoT-based smart living environments in the quality of life and autonomy, and in the
sustainability of the health and social care systems, demonstrating the seamless capacity
of integration and interoperability of the IoT ecosystem, and validating new business,
financial and organizational models for care delivery, ensuring the sustainability after the
project end, and disseminating these results to a worldwide audience. The consortium
comprises industries, research centres, SMEs, service providers, public authorities
encompassing the whole value chain in every Deployment Site.

Samsung Health (originally S Health) is a free application developed by Samsung that
serves to track various aspects of daily life contributing to wellbeing such as physical
activity, diet, and sleep. Launched on 2 July 2012, the application was installed by default

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 52

only on some smartphones of the brand. It could also be downloaded from the Samsung
Galaxy Store.

Since mid-September 2015, the application is available to all Android users. From 2
October 2017, the app is available for iPhones from iOS 9.0. The application is installed by
default on some Samsung smartphone models and cannot be removed without root. It is
possible to disable this application. The app changed its name from S Health to Samsung
Health on 4 April 2017, when it released version 5.7.1.

The dashboard is the main display of the application. This is the main novelty introduced
during the redesign of the application in April 2015 in version 4.1.0. The table shows on one
page, a general overview of the most recent data saved. In addition, it provides direct
access to each feature. Its composition and layout are customizable.

Some features are tracked by testing with phone sensors or phone accessories (Fitbit,
Galaxy Active, Galaxy Fit, etc.) and some features are tracked by user input. (food/calories,
weight, water amount, etc.).

Even if the Samsung Health App is able to collect a wide range of data, for GateKeeper
projects only a subset of data type are collected and share with the platform. In detail the
acquired data are:

• Blood Glucose

• Blood Pressure

• Caffeine Intake

• Floors Climbed

• Heart Rate

• Oxygen Saturation

• Sleep

• Sleep Stage

• Step Count

• Exercise

• Water Intake

• Weight

• Height

• Step Daily Trend

Some of these data are tracked by Galaxy Wearable App running on phone accessories
(e.g. Samsung Watch) and other ones are tracked by user input. Data tracked by phone
accessories are blood glucose, blood pressure, floors climbed, heart rate, oxygen
saturation, sleep, sleep stage, step count, exercise, and step. Data tracked user input are
caffeine intake, water intake, weight, and height.

Figure 32 shows in which way data acquired by Activage cloud platform are send to Data
Federation & Integration invoking the provided southbound API. All interactions are
performed using the PUSH modality, i.e. Activage will invoke the southbound APIs
provided by DFI.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 53

Figure 32 Interaction flows between Activage and Data Federation & Integration

Data coming from Samsung Health and SmartThings are acquired by Activage web could
platform which forwards them to DFI framework invoking the southbound IOT (module
integration engine) API in PUSH modality with an interval of 1 hour. Activage sends such
data using its proprietary data model format. In order to allow the integration and the
processing of such data in WP5 according to GK-FHIR format DFI includes a routine that
transforms these raw data, coming from the Activage, to HL7 FHIR and RDF format
(according the defined GK-FHIR-Profile) and stores them to the relative repositories. For
this kind of transformation from Activage raw data to GK-FHIR format several rules have
been define and described in the next chapter.

Activage gathers also data coming from several robots that monitor home and other IOT
devices for the health. Such data are sent to Data Federation & Integration using directly
in FHIR Server using the northbound APIs since data are already compliant with GK-FHIR
profile so no conversion is needed. Of course, acquired data are both persisted in FHIR
Server and at the same time transformed in RDF format and persisted in the internal graph
data DFI.

Finally, Activage contains an internal module, called UK Questionnaire, that is able to make
several questions to the users and collect their responses. This information are sent to DFI
using the northbound FHIR API since such data will be shared already in GK-FHIR
representation and the only conversion made by DFI is from GK-FHIR json to GK-FHIR RDF
format and persisted in the internal graph data DFI.

All data coming from Activage can be retrieved from the work package 5 by means the
northbound APIs in GK-FHIR and FHIR format.

 Interaction and integration with Casa Sollievo della Sofferenza
(CSS) Puglia [UPDATED]

CSS’s EHR data source it is worth to point out as several internal (HIS) systems could be
involved in principles (e.g. RIS/PACS, UMS, ENDOSCOPY etc.). It includes an intermediary
middleware (Mirth) that collects and sends (PUSH) the data to the Data Federation. The

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 54

input data format is expected to be a custom model (JSON format) so that the Data
Federation is mainly involved to convert the structure to the specific GK-FHIR profile and
to redirect (ROUTE) the data to the Puglia FHIR Server for the JSON FHIR representation
and RDF4J for RDF format.

Every day, at midnight, CSS invokes the southbound Puglia DFI API provided by Gk-
Integration-Engine to send patient’s data gathered through the whole day, The interaction
modality is PUSH because CCS invokes the API provide by DFI.

Since DFI is hosted on OKD platform that works behind a proxy, the interaction between
CSS and DFI happens with a vpn site-to-site connection. Figure 33 shows the sequence
diagram of the integration.

When CSS has to share data with GateKeeper platform and more in details with DFI
framework, it makes a to GTA for the login to the platform (GTA is the Gatekeeper
component that manage the authentication/authorization processes); if the
authentication is successful, CSS can invoke the southbound API provides by DFI system
and more in detail by the GK-Integration-Engine component, of course, using the PUSH
modality.

Once GK-Integration-Engine received data from CSS, it can invoke an internal very
complex routine that takes input (i) data sent by CSS, (ii) the list of GK-FHIR profiles defined
by task 3.5 and (iii) the set of custom conversion rules for each type of data processed for
the CSS Puglia pilot in order to convert incoming data to GK-FHIR based on defined GK-
FHIR Profiles running the defined conversion rules. The output is a FHIR Bundle of type
transaction that contains the list of created FHIR Resource to be sent to FHIR Server. As
soon as this bundle is ready it can be sent to FHIR Server component, by GK-Integration-
Engine, invoking a POST operation and passing in the body of the request the created
Bundle in JSON format.

When the POST request with the Bundle, containing the list of FHIR resources, arrives to
FHIR Server, there is a specific internal function that scrolls the list of resources and save
them into database. Then FHIR Server returns to gk-Integration-engine a
OutocomeResponse containing the output of all operation performed for the request.
Finally, the gk-integration-engine returns to the CSS an ‘http ok’ message if the operation
is successful otherwise an ‘http error’ message if some issues happened in this process.

FHIR Server contains an interceptor that allows to the RDF Watcher to retrieve the
persisted resource in JSON formal. As soon as the resource is retrieved, RDF Watcher
invokes an internal routine that convert it to RDF format and invoke the RDF post API in
order to persist it into RDF4J Server. This process is built to run in background avoiding
blocking the APIs in the FHIR Server to retrieve and save resources.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 55

Figure 33 Sequence Diagram interaction between CSS and Data Federation

Great effort has been spent to realize this integration by several technical phone calls to
address all the technical problems/bugs raised during the definition of the data format
and the type of interaction above all when the deployment of DFI has been moved from
the ENG Server to the OKD platform.

 Interaction and integration with HealthCloudProxy (HCP)
[NEW]

HealthCloudProxy (HCP) is a web application and also a series of REST APIs able to
retrieve and gather data from different health cloud base platforms such as Google Fit,
Fitbit, iHealth and Biobeat. With this component it is possible to obtain different kind of
data, on the fly, belonging to one or more patients registered into the system. Obviously,
the involved patients in the data retrieving process have to provide their authorisation to
the data retrieval operations. In addition to provide data in a proprietary format based on
the health cloud origin, the HCP components can also provide the data in a format
compliant to the Open mHealth standard [34]. In this second scenario, all the data will be
transported on the common data model and this is a great advantage for every
service/application that needs these data.

The interaction between HCP and DFI is performed by means the southbound APIs
provided by the internal component gk-integration-engine using the PULL modality.

Using the PULL modality it is not required a site-to-site connection between DFI and HCP
since the request starts from a component hosted inside OKD platform.

Figure 34 shows the sequence diagram of the interaction and integration between HCP
and DFI.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 56

Figure 34 Sequence Diagram interaction between HCP and Data Federation

DFI contains a cron job that starts every day at 3:00 AM to retrieve data from HCP and
persist them into FHIR and RDF Server. Such data are those collected the day before (from
00:01 AM to 00:00 PM) and belonging to all patients who use HCP and who are enlisted
within the Gatekeeper project.

At 3:00 DFI makes a request to FHIR Server to retrieve all FHIR resources
DeviceUseStatement, Patient and Device associated to the HCP. Then, FHIR Server
searches the Device resources relative to the HCP and returns to DFI the list of Device
resources and the DeviceUseStatement and Patient resources linked to the first ones. This
information is needed due to the lack of a direct link between the Device and Patient
resources within the FHIR Server as the association is maintained by DeviceUseStament
resource as shown in Figure 35.

Figure 35 Link between Patient and Device by means DeviceUseStament according to FHIR
model

Thanks to this information DFI can build a Map containing the association between the
logical id of the device and the logical id of the patient. Subsequently, the gk-integration-
engine makes a request to HCP to retrieve the authentication token passing a specific id
that represents the id associated to DFI when this one is registered to HCP. Now, gk-
integration-engine has all information to make a request to HCP to retrieve HCP data, in
fact it invokes the POST method passing as input:

• Token returned by HCP;
• Map containing the association between user logical id and device logical id;
• Start datetime;

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 57

• Name of the pilot/organization;
• End date time;

HCP will return all data based on the received input in a json format using a custom model
representation.

Once GK-Integration-Engine received data from HCP, it can invoke an internal very
complex routine that takes input (i) data sent by HCP, (ii) the list of GK-FHIR profiles defined
by task 3.5 and (iii) the set of conversion rules written ad hoc for each type of data
processed for the HCP gateway in order to convert incoming data to GK-FHIR based on
defined GK-FHIR profiles running the defined conversion rules. The output is a FHIR
Bundle of type transaction that contains the list of created FHIR Resource to be sent to
FHR Server. As soon as this bundle is ready it can be sent to FHIR Server component, by
GK-Integration-Engine, invoking a POST operation and passing in the body of the request
the created Bundle in JSON format.

When the POST request with the Bundle, containing the list of FHIR resources, arrives to
FHIR Server, there is a specific internal function that scrolls the list of resources and save
them into database. Then, FHIR Server returns to gk-Integration-engine a
OutocomeResponse containing the output of all operations performed for the request.
Finally, the gk-integration-engine returns to the HCP an http ok message if the operation
is successful otherwise an http error message if some problems happened in this process.

FHIR Server contains an interceptor that allows to the RDF Watcher to retrieve the
persisted resource in JSON formal. As soon as the resource is retrieved, RDF Watcher
invokes an internal routine that convert it to RDF format and invoke the RDF post API in
order to persist it into RDF4J Server. This process is built to work in background avoiding
blocking the APIs in FHIR Server to retrieve and save resources.

Great effort was spent to realize this integration by means several technical phone calls
to address all technical problems/bugs raised during the definition of the data model for
the association between device and patient.

 Interaction and integration with Aragon (SALUD) Application
[NEW]

SALUD is an EHR data source that collects and groups data coming from two components:
“LC Patient FROM Collection & Health education” and “MC/HC Telemonitoring APP”. The
first one is used by patients aiming to manage information about their health education
while the second one is a gateway running on smartphone, that retrieves some data
coming from sensors and devices and forwards them to SALUD web-app.

Once data have been persisted in SALUD web-app they can be sent to DFI invoking the
southbound APIs with the PUSH modality as shown in Figure 36.

DFI is hosted on OKD platform that works behind a proxy so the interaction between
SALUD and DFI happens with a vpn site-to-site connection. When SALUD has to share
data with GateKeeper platform and more in details with DFI framework, it makes a login
request to the GTA (it is the Gatekeeper component that manage the
authentication/authorization processes); if the authentication is successful, SALUD can
invoke the southbound API provides by DFI system and more in detail by the GK-
Integration-Engine component, of course, using the PUSH modality.

Once GK-Integration-Engine received data, it can invoke an internal very complex routine
that takes input (i) data sent by SALUD, (ii) the list of GK-FHIR profiles defined by task 3.5

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 58

and (iii) the set of conversion rules written ad hoc for each type of data processed for the
SALUD in order to convert incoming data to GK-FHIR based on defined GK-FHIR profiles
running the defined conversion rules. Rules are based on the Aragon data model collected
in the task 3.5 and the strong collaboration with task 3.5 for the definition of FHIR profile.
The output is a FHIR Bundle of type transaction that contains the list of created FHIR
Resources to be sent to FHR Server. As soon as this bundle is ready, it can be sent to FHIR
Server component, by GK-Integration-Engine, invoking a POST operation and passing in
the body of the request the generated Bundle in JSON format.

When the POST request with the Bundle, containing the list of FHIR resources, arrives to
FHIR Server, there is a specific internal function that scrolls the list of resources and saves
them into database compliant to FHIR standard. Then FHIR Server returns to gk-
Integration-engine a OutocomeResponse containing the output of all operations
performed in the request. Finally, the gk-integration-engine returns back to SALUD an http
ok message if the operation is successful otherwise an http error message if some
problems happened in this process.

Figure 36 Sequence Diagram interaction between Aragon EHR Application and Data
Federation

 Interaction and integration with Poland Application [NEW]
Data gathered by Poland application can be sent to DFI invoking the southbound APIs with
the PUSH modality as shown in Figure 37.

DFI is hosted on OKD platform that works behind a proxy so that the interaction between
Poland application and DFI happens with a vpn site-to-site connection. When Poland has

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 59

to share data with GateKeeper platform, and in particular with DFI framework, it makes a
login request to the GTA (it is the Gatekeeper component that manage the
authentication/authorization processes); if the authentication is successful, Poland
application can invoke the southbound API provided by the DFI system and more in detail
by the GK-Integration-Engine component using the PUSH modality.

Once GK-Integration-Engine received data, it can invoke an internal very complex routine
that takes input (i) data sent by Poland app, (ii) the list of GK-FHIR profiles defined by task
3.5 and (iii) the set of conversion rules written ad hoc for each type of data processed for
the Poland app in order to convert incoming data to GK-FHIR based on defined GK-FHIR
profiles running the defined conversion rules. Rules are based on the Poland data model
collected in the task 3.5 and the strong collaboration with task 3.5 for the definition of FHIR
profile (s. A.1.3). The output is a FHIR Bundle of type transaction that contains the list of the
created FHIR Resources to be sent to FHIR Server. As soon as this bundle is ready, it can
be sent to the FHIR Server component, by GK-Integration-Engine, invoking a POST
operation and passing in the body of the request the generated Bundle in JSON format.

When the POST request with the Bundle, containing the list of FHIR resources, arrives to
FHIR Server, there is a specific internal function that scrolls the list of resources and saves
them into database compliant to FHIR standard. Then FHIR Server returns to gk-
Integration-engine an OutocomeResponse containing the output of all operations
performed in the request. Finally, the gk-integration-engine returns back to Poland
application an http ok message if the operation is successful otherwise an http error
message if some problems happened in this process.

Figure 37 Sequence Diagram interaction between Poland EHR Application and Data
Federation

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 60

 Interaction with the OpenCaller [NEW]
During the last period of the GK project, it has been realised an Open Call for new
stakeholders in order to:

• develop/implement technology to complement the current one available in
GATEKEEPER

• develop innovative services based on AI available in GATEKEEPER

• evaluate and validate the functionalities offered in GATEKEEPER through new and
existing use cases

Thus, the Open Caller (OC) is an integration project on the top of the platform driven by
open caller developers. So, an OC consumes platform assets in an harmonized way for a
specific scope. In some cases it should also provide new assets that further populate the
platform (D2.6)

This paragraph presents an example of interaction with the OpenCaller ENVIRA.

First of all, ENVIRA has sent to ENG its data model that is related to environmental
monitoring measures collected through Nanoenvi IAQs (environmental devices). Such
devices work using a push model gathering measures from every sensor and composing
a JSON message (an extract in Figure 38) which is sent using MQTT protocol. In the
Appendix A.6 is reported the overall JSON message.

Figure 38 ENVIRA MODEL: an extract of the message

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 61

Measurements inside the Json message (Figure 38) follow SenML (Sensor Measurement
Lists) format [35] because of the nature of such data that are relative to simple sensor
measurements and device parameters. Thus,

• “device_info”, represents the UUID of the device and its firmware version
• “measures”, represents an array that collects all the environmental data with its

name ("n”), its unit of measure ("u”) and its value ("v”).
To continue, messages from Nanoenvi IAQs are received by a MQTT broker and then
redirected to a Nanoenvi IAQ Hub that exposes REST API to request values from sensors'
devices. Then, such data need a transformation in order to adapt them to DFI format (as
reported in A.1.6) and to be pushed to DFI. For this reason, a new converter has been
implemented, as described in A.5.
Currently, this OC is not assigned to a specific final user (i.e. clinics or similar) so it has been
codified as ‘genericpilot’.

When ENVIRA has to share its data with the DFI framework, it makes a login request to the
GTA; if the authentication is successful, ENVIRA application can invoke the southbound
API provided by the GK-Integration-Engine component using the PUSH modality.

Once the GK-Integration-Engine received data, it can invoke an internal routine that takes
input (i) data sent by ENVIRA, (ii) the list of GK-FHIR profiles defined by task 3.5 and (iii) the
set of conversion rules written ad hoc for each type of data processed for the ENVIRA in
order to convert incoming data to GK-FHIR based on defined GK-FHIR profiles running the
defined conversion rules. Rules are based on the ENVIRA data model collected when the
Open Caller has been involved in the project and the strong collaboration between ENG
and HL7 for the definition of FHIR profile (for further detail see A.1.3). The output is a FHIR
Bundle of type transaction that contains the list of the created FHIR Resources to be sent
to FHIR Server. As soon as this bundle is ready, it can be sent to the FHIR Server
component, by GK-Integration-Engine, invoking a POST operation and passing in the body
of the request the generated Bundle in JSON format.
When the POST request with the Bundle, containing the list of FHIR resources, arrives to
FHIR Server, there is a specific internal function that scrolls the list of resources and saves
them into database compliant to FHIR standard. Then FHIR Server returns to gk-
Integration-engine an OutocomeResponse containing the output of all operations
performed in the request. Finally, the gk-integration-engine returns back to ENVIRA an
http ok message if the operation is successful otherwise an http error message if some
issues have been detected in this process. Several input tests have been performed by
ENG to verify this conversion procedure.
In Table 11 and Table 12 are reported two examples of the conversion procedure related
to ENVIRA device and the Observation of the CO measure. Further details on codes and
information carried by the ENVIRA JSON are reported in the A.1.6.

Regarding to ENVIRA device, only its uuid has been mapped into GK-FHIR as showed here
below:

Table 11 ENVIRA Device FHIR conversion: an example

ENVIRA Device FHIR Device
uuid identifier

ENVIRA Observation has been mapped as reported in the following example:

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 62

Table 12 ENVIRA Observation FHIR conversion: an example

ENVIRA Observation (CO) FHIR Observation
 category
n code
u value.unit
v value.value

About the ‘category’, it is not present within the ENVIRA JSON data model, but it is
included into FHIR mapping rule in order to keep the information within the GK-FHIR
Server that such data is related to the environmental monitoring (coded as liv-
environment).

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 63

2 DATA FEDERATION AND INTEGRATION V2:
IMPLEMENTATION DETAILS

2.1 GK-Integration Engine [UPDATED]

 Apache Camel [UPDATED]
As described in the section above, the Data Federation takes care “to route” the data
(properly converted to the GK-FHIR Profile) to the pilot specific “data node” (i.e. dedicated
FHIR Server and RDF4J Server) hosted in dedicated cluster - see Section 3 for details.
Moreover, it is expected to also route such data toward other external systems (e.g. Big
Data infrastructure). These requirements convinced us to adopt the Apache Camel
framework that aims to make systems integration easier relying on message routing
features. The description of the Camel framework architecture and core components,
have been already described in D4.4(M15) and, then, not reported here for convenience.
Here below are briefly re-called, instead, the concrete technological stack adopted in GK
(relying on Camel) and the main logic implemented within the DataProcessor.

The Apache Camel framework has been used as development framework of the GK
integration engine along with the spring framework. In the figure below the real
technological stack adopted.

Figure 39 GK Integration Engine: implementation stack

For this purpose, a specific component for exposing REST API has been integrated (see
REST COMPONENT in the figure). It offers a REST styled DSL which can be used with Java
or XML. The intention is to allow end users to define REST services using a REST style with
verbs such as get, post, delete etc. To use the Rest DSL in Java then it was sufficient to do
as with regular Camel routes by extending the RouteBuilder (see RoutesToDataSpace
java class in the figure) and define the routes in the configure method.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 64

Figure 40 REST interface using Camel

In order to expose such REST interface trough swagger interface, the appropriate Camel
component (see SWAGGER COMPONENT in the figure) has been integrated.

One of the core Camel components is DataProcessor that implements the Processor9
interface used to implement consumers of message exchanges or to implement a
Message Translator10.

The Processor interface requires to implement a process method that accepts an
Exchange class parameter containing all the information needed for the route. Once a
Processor is developed then it can be easily used inside a route by the declaring of the
bean in Spring or suing the DSL syntax.

Figure 41 shows the operating logic inside the DataProcessor, represented with a flow
chart, for selecting the converter to be used, the output of the semantic model and the
server where to send and store converted data (FHIR Server o RDF Server). The
DataProcessor is used by the RouteBuilder class that is derived from to create routing
rules using the DSL. Instances of RouteBuilder are then added to the CamelContext.

9 https://camel.apache.org/manual/latest/processor.html

10 https://camel.apache.org/components/latest/eips/message-translator.html

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 65

Figure 41 DataProcessor flowchart

When the processor is invoked, it retrieves the name of the pilot and the sensorID passed
as path parameter in the REST request; this information is needed to understand which of
the two RESP APIs has been invoked, if EHR or IOT. To perform this operation, it is checked
if the sensorID is null (or empty), if true, the source consists of the pilot name and the EHR
otherwise the source is an IOT with pilot name and the id of the sensor. Information added
inside the source are needed to select the relative converter from raw data to FHIR/RDF.
Afterwards it is invoked a method, named getJavaConverter that takes in input the source
built in previous step that returns the corresponding Java converter. If the returned
javaConverter is not null, then there is a java converter associated to that source otherwise
it is checked if there exists e RML processor for the selected source.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 66

If a Java converter exists, it is verified if the body of the request is a file or a string (with a
JSON/XML representation). If the body is a file, it is invoked a method
(convertfromhttpBody) that reads the content from the file otherwise the same method is
invoke but it reads the content from a string variable. After it is verified if the output sematic
model retrieved by JavaConverter is FHIR, if false the destination of the converted data is
set to RDF4J and data are RDF, this mean that the converted data are send to RDF4J
Server with a RDF format. If the semantic model is FHIR then it is verified if the output
format is XML or JSON, if true the destination is set to FHIR Server and data is the FHIR
Bundle, this means that converted data are in the FHIR Bundle and sent to the FHIR Server.
If the output format is neither JSON nor XML then the destination is RDF4J Server and data
are in RDF format. If the semantic model is not FHIR then the destination is RDF4J and data
are in RDF format.

Returning to the step where it is checked if the javaconverter is not null (second rhombus),
if false this mean that the conversion has been developed using the RML rule languages.
For this reason, it is checked if exists a RML processor associated to the built source, if
true the RML engine is executed with the associated rules and the destination is set to
RDF4J with data in RDF format otherwise if it is not existing the RML processor associated
with that source then the destination is missing, and data are not sent to any server.

Summarizing, the goal of the flow chart (described above) is to retrieve the type of the
source for the specific pilot (EHR or IoT), the type of converter (JavaConverter or RML), the
output format (FHIR or RDF) and the server to send converted data (FHIR Server of RDF4J
Server).

Another component used in Apache Camel context is the FHIR component [4]: it
integrates with the HAPI-FHIR library which is an open-source implementation of the FHIR
(Fast Healthcare Interoperability Resources) specification in Java. It uses the URL format
fhir://endpoint-prefix/endpoint?[options], endpoint prefix can be one of capabilities, create,
delete, history, load-page, meta, operation, patch, read, search, transaction, update and
validate. It is used in the RouteBuilder to invoke FHIR Server to store FHIR data.

 Interface [UPDATED]
During the initial tests and interaction with pilot teams we identified the need to improve
the management (and logging) of errors during data conversion steps. For this reason
compared to the first version, the programmatic interface has been updated with the
design and the development of the error management feature performed by the GK-
Integration-Engine towards not supported or malformed data with respect to the data
model declared by the pilot/OC. In case of a malformed or not supported received data
from the caller, the GKIE responds with an HTTP 400 Bad Request message. Otherwise, if
the server falls in error the caller receives an HTTP 500 Server error.

Data Federation & Integration exposes two southbound APIs to accept data coming from
heterogeneous data sources registered in the platform, including personal clinical data
source (EHR), social care data sources, wearable data sources, thus producing a HL7 FHIR
and semantic repository.
These APIs aiming to accept heterogeneous data, coming from the several pilots’
applications registered into the platform, to produce a repository where data can be
retrieved from the northbound APIs described in the next section. Figure 42 shows the
swagger of the two interfaces while Table 13 and

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 67

Table 14 provide their descriptions.

Figure 42 Swagger of gk-integration-engine

EHR Interface enabling remote pilot EHR to send data. If a FHIR processor has been
preliminary registered for that pilot, data are converted and persisted in a FHIR R4
repository. These data are also converted in RDF and made available in a RDF4J
repository.

The interface accepts two inputs: the name of the pilot and the JSON/XML representation
of data to be stored in GK platform. The Pilot’s name is passed in the URI pattern of the
request and in order to understand to which pilot data belongs to.

The second input is data in JSON/XML format to be stored. The structure of this data must
be the same of the FHIR processor that has been preliminary registered for the specific
pilot. gk-integration-engine, based on the name of the pilot, select the corresponding
FHIR processor that is applied on the data passed in the body of the request. The output
of the interface is an HTTP 201 message if data are successful converted and persisted in
FHIR repository or HTTP 500 if an error has occurred, this could happen for example when
there is no FHIR processor registered to the pilot declared in the URI pattern of the FHIR
Server is not available.

Table 13 EHR southbound API

ID Operazione 3.1.2.1

Signature void saveEHRdata (String pilot, String data)

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 68

URI pattern POST https://{host}:{port}/gkie/EHR/data/{pilot}

Input • pilot (pilot name)

• Json/XML representation of EHR data to be stored in Data

Federation & Integration

Output • HTTP 201 if data are successful persisted

• HTTP 400 if the sent payload is not compliant with the

expected structure

• HTTP 500 if a server error has occurred

Figure 43 Swagger EHR southbound API

The IoT Interface enables remote IoT devices (or intelligent connector services) to send
data. If a FHIR processor has been preliminary registered for that device/service, data will
be converted and persisted in a FHIR R4 repository. The data will be also converted in RDF
and made available in a RDF4J repository. If the registered converter produces data
compliant to other ontologies (e.g. SAREF) then they will be loaded only in the RDF4J
repository.

The interface accepts in input three parameters: name of the pilot, sensorID (or the name
of the intelligent connector) and the JSON/XML representation of raw data as string or in
a file.

The association between pilot and sensorID allows to select the FHIR processor, if
preliminary registered, to convert data to FHIR format and RDF4j repository. If it is
registered only a RML converter are compliant to other ontology and they will be stored
only in RDF repository and not in FHIR.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 69

The output of the interface is an HTTP 201 if data are successful converted and persisted
in FHIR repository and HTTP 500 if an error has occurred, this could happen for example
when there is no FHIR processor registered to the pilot declared in the URI pattern of the
FHIR Server is not available.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 70

Table 14 IoT southbound API

ID Operazione 3.1.2.1

Signature void saveIOTdata (String pilot, String sensorID)

URI pattern POST https://{host}:{port}/gkie/IOT/data/{pilot}/{sensorID}

Input • pilot (pilot name)

• sensorID (sensorID or name of the IOT collector that is sending

data)

• Json/XML representation of raw data to be stored in Data

Federation & Integration

• Or file containing JSON/XML representation of raw data to be

store in Data Federation & Integration

Output • HTTP 201 if data are successful persisted

• HTTP 400 if the sent payload is not compliant with the

expected structure

• HTTP 500 if a server error has occurred

Figure 44 Swagger IOT southbound API

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 71

 Monitoring Console [NEW]
As already documented in the first deliverable (D4.4) we adopted Apache Camel “to route”
the data (properly converted to the GK-FHIR Profile) to the pilot specific “data node” (i.e.
dedicated FHIR Server and RDF4J Server) hosted in dedicated namespace- see Section 3
for details and, moreover, to also route such data toward other external systems (e.g. Big
Data infrastructure). The Camel architecture based on enterprise integration pattern
simplified the work so that we confirmed our choice also for the next version of the DFI.
However, one of the things we’ve noticed is the lack of visibility into what Camel is doing.
In principle it would be possible to monitor things by looking at the
incoming/processing/done queues but getting numbers on performance etc is hard and
looking at JMX output is not very easy.

For this reason, we decided to integrate a dedicated management console that was
conceived as a web application offering a dedicated monitoring view over Camel routes.
It relies on an open-source layer [1] which is a lightweight and modular HTML5 web
console with lots of plugins for managing Java applications. Once installed it can connect
to any Java process which has a Jolokia agent installed and view its JMX MBeans and work
with its various services such as Apache Camel, Apache ActiveMQ or fabric8.

The management console consists of 2 parts, the backend which is running in a Java Web
Container the Jolokia gateway (JMX to JSON) and the front end containing the Angular, D3
and Javascript to do the rendering of the JSON responses in a very nice way. Depending
on how it is expected to use Hawtio it is possible to run the backend using a java
standalone jar, a servlet engine, application server or an OSGI container. A general
overview of the management console now integrated along with the DF is shown in
Errore. L'origine riferimento non è stata trovata..

Some of its main features are listed below:

• Dynamic agent/service search. Discover function used to detect services which
can be integrated with Hawtio, in our case the service is Camel (s. Figure 49).

• JMX Management. Powerful JMX management using Jolokia and on the fly
refreshes when a new application is deployed.

• It provides system information, statistics, analysis and management about the
Routes (Figure 47)

• How many times has the route worked (live reload)?

• Show Jvm parameters

• Heap objects and count

• How many errors were received?

• How many transactions were successful?

Here below we have reported some screenshots about these features.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 72

Figure 45 Camel existing Routes

All the routes are listed along with some meaningful metrics (e.g. uptime which is the
overall time the route was up and running, completed which is the number of completed
execution of the route, mean time which is the mean execution time for the specific route
etc.)

We can analyse more in details every Route in Figure 45 with the route diagram panel
Figure 46 that shows the details about the routes and also the dynamic evolution about
the path of the information through the route components.

Figure 46 Route Diagram

The numbers within each box are the messages processed, and the numbers on the
arrows (0 in the figure) are the number of messages that are in flight (currently being
processed). The numbers update in real time.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 73

Figure 47 Route Metrics

Figure 48 Details about metrics

The different metrics (e.g. completed, mean time, etc.) are made available not only within
a table (tab “Routes”) but also (tab “Route Metrics”) in a graphical modality by means of
dedicated widget

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 74

Figure 49 Exposed southbound APIs

Figure 50 Exchanges

 Data Converter [NEW]
2.1.4.1 Implementation [NEW]

Data Federation & Integration includes an engine able to convert from raw data to FHIR
format, based on the FHIR Profiles (GK-FHIR Profile from now on) defined in the scope of
the task 3.5. To implement this feature, the data models, provided by the server pilots,
involved in the project, have been analysed together with the GK-FHIR Profile to define
the rules that can be processed to achieve this type of transformation.

When invoked (through the southbound API), the engine takes as input the raw data and
exploiting the transformation rules associated to the specific data source, produces as
output the converted GK-FHIR data.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 75

Figure 51 Engine to convert raw data to FHIR

1. The engine can perform the conversion over different type of data: Conversion
from raw data to FHIR taking as input a specific third party data model (task 3.4) by
applying the defined rules listed in the next section. These rules are processed
through complex algorithms written in Java and Python.

2. Conversion from data already compliant to the FHIR standard to GK-FHIR Profile.
It takes in input data already in FHIR but not compliant with the GK-FHIR Profiles
(as defined in the task 3.5) so it adapts this data to GK-FHIR profiles.

2.1.4.2 Rules [NEW]

As mentioned above, this paragraph presents the rules implemented in order to make the
data compliant with the GK-FHIR Profile.

In A.1, A.2 and A.3 are reported in tabular form the details of the rules defined to convert
the customs data models collected in task 3.4 in the FHIR format compliant with the
profiles defined in the task 3.5. Each table consists of seven columns, the first four are
marked in blue (i.e. attribute, type, description and constraint) to represent attributes
coming from task 3.4 while the other three columns marked in red (i.e. FHIR Mapping, FHIR
Attribute and FHIR note) describe how each field is mapped to FHIR according to the
specific profile.

2.2 GK-FHIR Server [UPDATED]
The gk-fhir-server is a Sprint Boot project that implements the HL7 FHIR v4 specification
according to the official standard and customized for Gatekeeper project. It uses the HAPI
FHIR [9] that is Java software library facilitating a built-in mechanism for adding FHIR's
RESTful Server functionalities to a software application. The HAPI FHIR Java library is open
source. The HAPI RESTful (Representation State Transfer) Server is based on a Servlet, so
it should be deployed with ease to any compliant containers that can be provided. Simple
annotations could be used to set up the server on the large part.

Project gk-fhir-server provides all the REST APIs defined by the standard together with
the whole data model based on the concept of Resource. Figure 52 shows the GUI of the
application exposes on HPE systems.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 76

Figure 52 gk-fhir-server GUI

On the left side there is the list of all supported Resources, selecting one of them it is
possible to access to the relative Rest APIs.

Figure 53 gk-fhir-server GUI Observation page

During the period the deliverable refers to, we continued the customization of the server,
according to the definition of the capability statement and the profiles of the resources
that are strictly connected with the definition of GK-FHIR-Profile coming from the output
of the task 3.5. The details about the last GK-FHIR-Profile the server refers to is
documented in [25] and are not reported here for sake of simplicity.

The selected database to persist data in gk-fhir-server is Maria DB [13].

When a REST request is performed on FHIR Server, for example the creation of the
Resource passing the JSON in body of the request, it is persisted into database invoking
the methods offered by the module named JPA Server Storage. This module returns the

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 77

JSON of the persisted Resource that will be added in an OperationOutcome resource and
returned in the response of the request.

The workflow has been integrated with an interceptor mechanism that catches each
request performed on JPA Server Storage retrieving the resource created, updated, or
deleted after the operation completed successfully. The interceptor checks if the
operation is a “create” and only in this case saves all the received resources in JSON files
into a folder shared with the GK-RDF Watcher. At the same time, if the use of the Kafka
channel was enabled, the stored resources will send on the channel and read by every
subscriber.

During the second stage of this deliverable, some partners noticed that the FHIR server
could not store the binary data linked to some resources.

Related to this problem, we have analysed the new version of the FHIR Server and we
have discovered that this problem has been fixed. So we have prepared a new image with
the new release of the FHIR server and we have also written the new YAML files; in this
way, each pilot will be able to choose the FHIR Server version that is needed for its
purposes.

2.3 GK-RDF Watcher [NEW]
The GATEKEEPER RDF-Watcher is the component that executes the RDF conversion.

In the first release of the Data Federation, the RDF conversion and storage processes had
been processed within the FHIR Server. During the test stage, we noticed that this
evaluation chain caused a heavy slowdown in the FHIR Server lifecycle till to cause,
sometimes, a fault within the server processes. For this reason, we have chosen to split
the RDF processes from the GK-FHIR Server and put them into a separate docker image.

This component shares a folder with the FHIR Server and listens for all new files that wrote
in it; when a new file has been written the watching process launch an RDF conversion
procedure. The watching process is made with Inotifyd [5], a Linux integrated mechanism
to watch a specific folder or file and be notified if something happens within its context.

After that, the new RDF content is sent to the RDF Server by the same process.

To accomplish the described process, have been realized to Linux scripts and one Python
script:

• watcher is responsible to listen for every change in the shared folder and log all
changes in this folder.

• fhir-to-rdf-executor-script is responsible to launch the python script for every
stored file and log every result. This script is launched by the watcher.

• jsontordf4j is responsible for conversion from FHIR to RDF through fhir_json_to_rdf
python library and then sends the result to RDF Server.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 78

Figure 54 GK-RDF Watcher logic view

Data Federation & Integration provides two kinds of northbound APIs to retrieve data in
RDF Format (JSON or XML) and RDF format (JSON or XML). The source code of HAPI FHIR
library does not provide any mechanism to retrieve data in RDF format so a dedicated
module has been implemented and integration into the tool.

This module is a python script that has two inputs: the JSON of the FHIR resource and the
endpoint of the RDF Server where to send transformed RDF data. Internally this script
converts the Resource from JSON to RDF format and sends converted data to the
specified endpoint. This script is based on the fhirtordf [8] library.

To sum up, the rdf-watcher is the component that launches the python script. In order to
better understand how this process works, in the following table is shown an example of
a generated RDF representation by the execution of the python script starting from a JSON
representation of Bundle resource containing two entries: Condition and Patient where in
first column contains the JSON format while the second one contains its equivalent in the
FHIR RDF format.

This routine is applied to each resource persisted in gk-fhir-server.

Table 15 Example of conversion from FHIR JSON to RDF format

JSON format RDF format

{

 "resourceType":"Bundle",

 "entry":[

 {

 "fullUrl":"urn:uuid:80c129ba-dde5-42b8-
8cb8-c302f9541e5d",

 "resource":{

 "resourceType":"Patient",

 "identifier":[

 {

 "system":"CAREACROSS",

 "value":"group/1"

@prefix fhir: <http://hl7.org/fhir/> .

@prefix loinc: <http://loinc.org/rdf#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix sct: <http://snomed.info/id/> .

@prefix v2: <http://hl7.org/fhir/v2/> .

@prefix v3: <http://hl7.org/fhir/v3/> .

@prefix w5: <http://hl7.org/fhir/w5#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 79

 }

]

 }

 },

 {

 "fullUrl":"urn:uuid:4dc96d50-454b-4f11-
b5e8-70078976e20b",

 "resource":{

 "resourceType":"Condition",

 "extension":[

 {

"id":"http://hl7.org/fhir/StructureDefinition/is-
primary-disease",

 "url":null,

 "valueBoolean":false

 }

],

 "category":[

 {

 "coding":[

 {

"system":"http://www.crowdhealth.eu/hhr-t",

 "code":"diagnosis",

 "display":"Diagnosis"

 }

]

 }

],

 "code":{

 "coding":[

 {

 "system":"http://snomed.info/sct",

 "code":"441118006",

 "display":"Progesterone receptor
negative neoplasm (disorder)"

 }

]

 },

 "subject":{

 "reference":"urn:uuid:80c129ba-dde5-
42b8-8cb8-c302f9541e5d"

 }

 }

<http://hl7.org/fhir/Condition/4eaacaec-19e0-4e95-8b8f-be6e3c6e9972> a
fhir:Condition ;

 fhir:nodeRole fhir:treeRoot ;

 fhir:Condition.category [

 fhir:index "0"^^xsd:integer ;

 fhir:CodeableConcept.coding [

 fhir:index "0"^^xsd:integer ;

 fhir:Coding.code [

 fhir:value "diagnosis"

] ;

 fhir:Coding.display [

 fhir:value "Diagnosis"

] ;

 fhir:Coding.system [

 fhir:value "http://www.crowdhealth.eu/hhr-t"

]

]

] ;

 fhir:Condition.code [

 fhir:CodeableConcept.coding [

 a sct:441118006 ;

 fhir:index "0"^^xsd:integer ;

 fhir:Coding.code [

 fhir:value "441118006"

] ;

 fhir:Coding.display [

 fhir:value "Progesterone receptor negative neoplasm (disorder)"

] ;

 fhir:Coding.system [

 fhir:value "http://snomed.info/sct"

]

]

] ;

 fhir:Condition.subject [

 fhir:link <http://hl7.org/fhir/urn%3Auuid%3A80c129ba-dde5-42b8-8cb8-
c302f9541e5d> ;

 fhir:Reference.reference [

 fhir:value "urn:uuid:80c129ba-dde5-42b8-8cb8-c302f9541e5d"

]

] ;

 fhir:DomainResource.extension [

 fhir:index "0"^^xsd:integer ;

 fhir:Element.id [

 fhir:value "http://hl7.org/fhir/StructureDefinition/is-primary-disease"

] ;

 fhir:Extension.url [

 fhir:value "None"

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 80

 }

]

}

] ;

 fhir:Extension.valueBoolean [

 fhir:value "false"^^xsd:boolean

]

] ;

 fhir:Resource.id [

 fhir:value "4eaacaec-19e0-4e95-8b8f-be6e3c6e9972"

] .

<http://hl7.org/fhir/Condition/4eaacaec-19e0-4e95-8b8f-be6e3c6e9972.ttl> a
owl:Ontology ;

 owl:imports fhir:fhir.ttl .

<http://hl7.org/fhir/Patient/5077b199-0160-4358-be29-fc0b7e10cadd> a
fhir:Patient ;

 fhir:nodeRole fhir:treeRoot ;

 fhir:Patient.identifier [

 fhir:index "0"^^xsd:integer ;

 fhir:Identifier.system [

 fhir:value "CAREACROSS"

] ;

 fhir:Identifier.value [

 fhir:value "group/1"

]

] ;

 fhir:Resource.id [

 fhir:value "5077b199-0160-4358-be29-fc0b7e10cadd"

] .

<http://hl7.org/fhir/Patient/5077b199-0160-4358-be29-fc0b7e10cadd.ttl> a
owl:Ontology ;

 owl:imports fhir:fhir.ttl .

<http://hl7.org/fhir/urn%3Auuid%3A80c129ba-dde5-42b8-8cb8-
c302f9541e5d> a fhir:Resource .

Python fhirtordf script has been integrated in the FHIR Server through an interceptor that
works at JPA Server Storage level, as shown in Figure 55.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 81

Figure 55 gk-fhir-server interceptor and gk-rdf-watcher

2.4 RDF4J Workbench
Eclipse RDF4J is an open-source framework for storing, querying, and analysing RDF
(Resource Description Framework) data distributed under “Eclipse Distribution License 1.0
(BSD)” [31][32]. It contains implementations of an in-memory triplestore and an on-disk
triplestore, along with two separate Servlet packages that can be used to manage and
provide access to these triplestores, on a permanent server. RDF4J supports two query
languages: SPARQL and SeRQL), as well as a set of fully streaming parsers and writers for
most common RDF syntax formats, called Rio.

RDF4J's RDF database API differs from comparable solutions in that it offers a stackable
interface through which functionality can be added, and the storage engine (SAIL) is
abstracted from the query interface. Many other triplestores can be used through the
RDF4J API. Through the stackable interface, functionality can be added to all of these
stores.

The current core development team consists of individuals and employees of other
commercial software vendors that have an interest in continued maintenance and
development of the project.

In addition to its primary use as a set of Java libraries, RDF4J also provides a Server web
application that can be accessed as a web service for RDF database access, and a
Workbench web application which provides a (web-based) client user interface for an
RDF4J Server, with a full SPARQL query editor (with completion features and syntax
highlighting), and several convenient ways to manipulate or explore the data in any RDF
database/SPARQL endpoint.

A general overview of RDF4J framework is shown in Figure 56.

Main features of this RDF solution are synthesized below:

• full support for SPARQL 1.1 query and update;

• fast and efficient parsing of all common RDF formats through the Rio parser toolkit;

• an easy to use, lightweight, modern Java API for handling RDF in code;

https://en.wikipedia.org/wiki/Eclipse_Foundation
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Resource_Description_Framework
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://projects.eclipse.org/content/eclipse-distribution-license-1.0-bsd
https://projects.eclipse.org/content/eclipse-distribution-license-1.0-bsd
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Servlet
https://en.wikipedia.org/wiki/SPARQL
https://en.wikipedia.org/w/index.php?title=SeRQL&action=edit&redlink=1
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/API

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 82

• support for RDF Schema reasoning as well as SHACL validation;

• fast in-memory RDF database with optional file-backed persistence;

• fast Native RDF database with full binary persistence to disk;

• convenient access to third-party RDF database implementations and remote
SPARQL endpoints

Figure 56 rdf4j workbench: a general overview

2.5 Data Federation & Integration Dockerization
[UPDATED]

 Docker overview
All the components consisting of Data Federation and Integration has been migrated to
Docker [6]. Docker is a set of platforms as a service (PaaS) products that use OS-level
virtualization to deliver software in packages called containers. Containers are isolated
from one another and bundle their own software, libraries and configuration files; they can
communicate with each other through well-defined channels. All containers are run by a
single operating system kernel and therefore use fewer resources than virtual machines.
The service has both free and premium tiers. The software that hosts the containers is
called Docker Engine [7].
A Docker image is a read-only template that contains a set of instructions for creating a
container that can run on the Docker platform. It provides a convenient way to package
up applications and preconfigured server environments, which can be used for own
private use or share publicly with other Docker users. A Docker image can be created in
one of two ways:

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 83

• Interactive Method: by running a container from an existing Docker image,
manually changing that container environment through a series of live steps and
saving the resulting state as a new image.

• Dockerfile Method: by constructing a plain-text file, known as a Dockerfile, which

provides the specifications for creating a Docker image.

The Dockerfile approach is the method of choice for real-world enterprise-grade
container deployments. It is a more systematic, flexible and efficient way to build Docker
images and the key to compact, reliable and secure container environments. In short, the
Dockerfile method is a three-step process whereby you create the Dockerfile and add the
commands you need to assemble the image.

The output of build process of Dockerfile is a Docker Image while a Container is a running
Image, as shown in

Figure 57 Steps to create a docker container

Compose is a tool for defining and running multi-container Docker applications. With
Compose, it is possible to use a YAML file to configure an application’s services. Then, with
a single command, it is possible to create and start all the services from a custom
configuration. Compose works in all environments: production, staging, development,
testing, as well as CI workflows. Using Compose is basically a three-step process:

• Define the app’s environment with a Dockerfile so it can be reproduced anywhere.

• Define the services that make up the app in docker-compose.yml so they can be
run together in an isolated environment.

• Run docker-compose up and Compose starts and runs the entire app.

Container registries are catalogues of storage locations, known as repositories, where it is
possible to push and pull container images. The three main types of registries are as follows:

• Docker Hub: Docker’s own official image resource where it is possible to access
more than 100,000 container images, shared by software vendors, open-source
projects and Docker’s community of users. It is possible also use the service to host
and manage your own private images.

• Third-party registry services: Fully managed offerings that serve as a central point
of access to your own container images, providing a way to store, manage and
secure them without the operational headache of running your own on-premises
registry.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 84

• Self-hosted registries: A registry model favored by organizations that prefer to
host container images on their own on-premises infrastructure— typically because
of security, compliance or lower latency requirements.

 Migration of Data Federation & Integration to Docker
[UPDATED]

The prototype of Data Federation & Integration has been released as Docker microservice
where some containers are pulled from the Docker Hub registry while other ones are
implemented ad hoc starting from the source code of the application. As shown in Figure
58 the DFI framework consists of five containers that can be launched with a single
command using the implemented YAML docker-compose file. The image of maria db and
gk-rdf4j are pulled the public Docker Hub registry while images for containers gk-
integration-engine and gk-fhir-server are written from scratch. Following some details
about each container.

Figure 58 Data Federation & Integration in Docker

The image of gk-rdf4j is pulled from the Docker Hub registry and configurated to be
integrated into DFI framework. It is written in Java and deployed on an embedded Tomcat
application server.
The image of gk-integration-engine is developed by ENG team, it is based on Tomcat,
Java and HAPI-FHIR library. The output is a YAML Dockerfile. This image is pushed on the
private ENG Docker registry so that it can be pulled and started when the Docker compose
is launched.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 85

Figure 59 Dockerfile for gk-integration-engine

The image of RDFWatcher has been developed by ENG team, it is based on Linux and
Python to watch for every new JSON file written into its shared folder and run the routine
to convert them from FHIR JSON to RDF (see sec. 2.3 for further details).

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 86

Figure 60 Dockerfile for gk-rdf-watcher

Also, the gk-fhir-server container has been developed by ENG team using the approach
of Dockerfile and pushed on the private ENG Docker registry. On the image of this
container is installed Tomcat and Java, to run the FHIR Server, gk-fhir-server uses the
container maria-db to store data, such container persists data in a docker volume. Figure
61 shows Dockerfile written for gk-fhir-server.

Figure 61 Dockerfile for gk-fhir-server

During the development stage the Docker-compose file is developed in order to start all
containers with one command. It pulls images of maria db and rdf4j from Docker Hub

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 87

registry and the images of gk-integration-engine and gk-fhir-server from the private
Docker registry installed on ENG Server.
After a test stage, we ported the Docker compose file into several YAML files compliant
with OKD platform provided by HPE in the last months. We discuss this process, more in
detail, in the next chapter.

2.6 Source Code [NEW]
The current prototype of the Data Federation & Integration is shared on the git ENG
repository. It consists of three projects: gk-integration-engine, gk-fhir-server and gk-
docker.

The source code of gk-integration-engine is available at ENG Gitlab
https://production.eng.it/gitlab/GTKEEPER_EU/gk-integration-engine. The used
technologies are:

• JAVA 1.8 as programming language.

• Framework Spring [18].

• Apache Camel for the routing.

• Docker to create the image of the software.

• HAPI FHIR library to implement the conversion from raw data to FHIR.

• RML library to convert raw data to RDF.

The source code of gk-fhir-server is available at ENG Gitlab
https://production.eng.it/gitlab/GTKEEPER_EU/gk-fhir-server. It is based on the
following technologies:

• JAVA 1.8 as programming language.

• HAPI FHIR library to implement the FHIR Rest APIs.

• Tomcat [19] as application server.

• Maria database as storage.

• Docker to create the image of the software.

The source code of gk-rdf-watcher is available at ENG Gitlab
https://production.eng.it/gitlab/GTKEEPER_EU/gk-rdf-watcher. It is based on the
following technologies:

• Linux Alpine

• Inotifyd to watch a specific folder or file and be notified if something happens
within its context

• Python to write the routine to convert FHIR data to RDF.

The source code of gk-docker is available at ENG Gitlab
https://production.eng.it/gitlab/GTKEEPER_EU/gk-docker. It contains the docker-
compose file that is start the docker images of the components belonging to DFI: gk-
integration-engine, gk-fhir-server, maria database, rdf4j workbench.

Moreover it contains the YAML file to deploy the all services on the OKD platform.

https://production.eng.it/gitlab/GTKEEPER_EU/gk-integration-engine
https://production.eng.it/gitlab/GTKEEPER_EU/gk-fhir-server
https://production.eng.it/gitlab/GTKEEPER_EU/gk-rdf-watcher
https://production.eng.it/gitlab/GTKEEPER_EU/gk-docker

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 88

3 Data Federation and Integration v2:
Deployment Environments [UPDATED]

After the first release of this document, the need to adapt the mentioned solutions in some
OpenShift deployable artifacts has emerged. For this reason, after a brief analysis of the
OpenShift artifacts, we ported and arrange our components in a series of YAML files
releasable over OKD platform.

3.1 Open Shift and HPE Data Centre overview
Now we analyse the migration procedure that was implemented to port all the software
over the OKD platform provided by HPE. First of all, we will introduce an overview of the
OpenShift artifact that we intend to use, then we examine all the YAML files that are the
base of the components; in the end, we present one of the possible deployment scenarios
and the expressed pilot’s needs.

All the mentioned files are stored to this link:

https://production.eng.it/gitlab/GTKEEPER_EU/gk-docker/-/tree/master/hpe-okd

and each partner will be able to download its configuration looking for its name in the
folder name. e.g.: the Puglia pilot will have to download all the files in the "hpe-okd-Puglia"
folder and so on for every partner.

Finally, we try to explain a possible way to manage a flow of continues integration and
deployment using the tools provided by HPE.

 Platform description: OpenShift [NEW]
Red Hat® OpenShift® [3] is a hybrid cloud, enterprise Kubernetes application platform,
trusted by thousands of organizations.

OpenShift Artifact used in a generic deployment over an OKD namespace are:

• Config Map, an API object used to store non-confidential data in key-value pairs.
Pods can consume ConfigMaps as environment variables, command-line
arguments, or as configuration files in a volume. In addition, it allows you to
decouple environment-specific configuration from your container images, so that
your applications are easily portable

• Persistent Volume Claim, a piece of storage in the cluster that has been provisioned
by an administrator or dynamically provisioned using Storage Classes. It is a
resource in the cluster just like a node is a cluster resource. PVs are volume plugins
like Volumes, but have a lifecycle independent of any individual Pod that uses the
PV. This API object captures the details of the implementation of the storage, be
that NFS, iSCSI, or a cloud-provider-specific storage system. A
PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod.
Pods consume node resources and PVCs consume PV resources. Pods can
request specific levels of resources (CPU and Memory). Claims can request
specific size and access modes (e.g., they can be mounted ReadWriteOnce,
ReadOnlyMany or ReadWriteMany, see AccessModes

https://production.eng.it/gitlab/GTKEEPER_EU/gk-docker/-/tree/master/hpe-okd

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 89

• Service, an abstraction which defines a logical set of Pods and a policy by which to
access them (sometimes this pattern is called a micro-service). The set of Pods
targeted by a Service is usually determined by a selector

• Deployment, represents a set of multiple, identical Pods with no unique identities.
A Deployment runs multiple replicas of your application and automatically
replaces any instances that fail or become unresponsive. In this way, Deployments
help ensure that one or more instances of your application are available to serve
user requests. Deployments are managed by the Kubernetes Deployment
controller

• Route, exposes a service at a host name, like www.example.com, so that external
clients can reach it by name. DNS resolution for a host name is handled separately
from routing; your administrator may have configured a cloud domain that will
always correctly resolve to the OKD router, or if using an unrelated host name you
may need to modify its DNS records independently to resolve to the router.

 GK Integration Engine deployed on HPE Data Centre [NEW]
As we are going to describe the need for every pilot to have its own namespace in the
OKD platform has emerged during the design stage. For this reason, we have a separate
instance of the Gatekeeper Integration Engine (GKIE) for every of them.

Another thing that emerged during the design stage, is that some pilots already send their
data into FHIR format, and these data are already compliant with the GK-FHIR profile. For
these pilots, we haven't the necessity to install an instance of the GKIE component.

For any other pilots that use their own data format or their own FHIR profile, it's necessary
to use the GKIE beforehand configured with their conversion rules.

For the correct use of the GKIE Southbound APIs, every pilot will have to configure a VPN
site-to-site connection between its system and HPE's OKD platform. This connection is a
security constraint provided by HPE, if not configured the user will not be able to invoke
the Data Federation services.

Every pilot can correctly set up its connection to the HPE platform following the guide
released by HPE [22].

Now we introduce and describe all the OpenShift artifacts implemented for the GKIE and
their suggested installation order, later in this chapter we provide some steps useful to
reproduce their installation into the OKD platform (as described in 3.1.8):

Table 16 GATEKEEPER Integration Engine OpenShift artifacts list

File Name Kind #

gk-integration-engine-configmap.yaml ConfigMap 1

data-federation-pvc-gkie.yaml PersistentVolumeClaim 2

gk-integration-engine-service.yaml Service 3

gk-integration-engine-deployment.yaml Deployment 4

gk-integration-engine-route.yaml Route 5

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 90

Figure 62 Gatekeeper Integration Engine OKD deployment schema

As shown in the above figure the GK integration engine needs:
• one service for REST communication through different components
• one route for routing incoming connection to its service
• one persistent volume to store its log about its work, mounted on “/gkie/logs”

directory

 GK-FHIR Server and GK RDF Watcher deployed on HPE Data
Centre [NEW]

 Like the GKIE, also the FHIR Server will be released one per namespace.

Table 17 Gatekeeper FHIR Server & GK RDF Watcher OpenShift artifacts list

File Name Kind #

gk-fhir-server-configmap.yaml ConfigMap 1

gk-rdf-watcher-log-pvc.yaml PersistentVolumeClaim 2

data-federation-pvc-server-data.yaml PersistentVolumeClaim 3

gk-rdf-watcher-json-pvc.yaml PersistentVolumeClaim 4

gk-fhir-server-service.yaml Service 5

gk-rdf-watcher-gk-fhir-server.yml Deployment 6

gk-fhir-server-route.yaml Route 7

It is possible to configure some options about the FHIR Server from the “env” section of
the YAML file, regarding this, here below it shows a screen with the most important option
which every pilot must configure.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 91

Figure 63 env section of the FHIR Server deployment YAML file

If the pilot chose a version of the FHIR standard different from the fourth, it must declare
this setting the variable “fhir_version” in the env section:

Figure 64 env section of the FHIR Server deployment YAML file

As shown in both above figures, in the FHIR Server deployment, we have the possibility to
enable two different channels to forward the stored data. In fact, the “enable_kafka” option
enables two Apache Kafka channels and forwards every bundle or resource that has been
written in the FHIR Server; every subscriber to these channels will receive the sent
information.
Instead, the “enable_rdf4j” option enables a procedure that consents to convert the
received resources into RDF format and stores them into the provided RDF Server.
For this process, the use of the RDF Watcher is needed. In fact, the use of the FHIR Server
only, not guarantee the whole conversion process, because for problems about bad
performance, the FHIR Server can only write the received resources into JSON files stored
in a folder shared with the RDF Watcher component.
As we mentioned in the paragraph 2.3, when a file is stored in this shared folder, the RDF
Watcher takes it in charge and starts a conversion process that ends with sending the
converted information to the RDF Server.
Normally these two components can be deployed in separated POD. In that case, must
be defined a shared persistent volume with access mode set to "ReadWriteMany"; this
mode is the only way to enable access from different POD to the same memory space.
This setting is not allowed on the OKD platform provided by HPE; so that, we have chosen

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 92

to arrange a unique deployment with two containers. In this case, we can use a shared
persistent volume with access mode set to "ReadWriteOnce" because the containers that
need to access it are in the same POD.

Figure 65 Gatekeeper FHIR Server & Gatekeeper RDF Watcher OKD deployment schema

In the figure above, we can best notice the cohabitation of the FHIR Server and RDF
Watcher in the same Deployment. They have a persistent volume for each and one other
persistent volume shared between them.
As shown in the figure the components need:

• one service for GK-FHIR Server REST communication with the other components
• one route for routing incoming connection to GK-FHIR Server service
• one persistent volume to store FHIR Server temporary files, mounted on

“/usr/local/tomcat/target” directory
• one shared persistent volume to store FHIR resources JSON files, mounted on

“/gkrw/json” directory watched by the RDF in search of newly stored files to
manage

• one persistent volume to store the RDF Watcher log about its work, mounted on
“/gkrw/log” directory

 GK-FHIR Database [NEW]
Here below is reported the OpenShift Artifacts list related to the GK-FHIR Database and
their suggested installation order.

This component uses a public docker image based on MariaDB.

Table 18 Gatekeeper FHIR Database OpenShift artifacts list

File Name Kind #

data-federation-db-cnf-configmap.yaml ConfigMap 1

data-federation-pvc-db.yaml PersistentVolumeClaim 2

db-service.yaml Service 3

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 93

db-deployment.yaml Deployment 4

Figure 66 Gatekeeper FHIR Database OKD deployment schema

As shown in Figure 66 the db-fhir needs:
• one service for db-fhir REST communication with the other components, typically

the FHIR Server
• one persistent volume to store FHIR Server resources, mounted on

“/bitnami/mariadb” directory
• one config map to memorize all the MariaDB options, mounted on

“/opt/bitnami/mariadb/conf/custom.cnf” file

 RDF4J Workbench deployed on HPE Data Centre [NEW]
This component is an open-source modular Java framework for working with RDF data .
This includes parsing, storing, inferencing and querying of/over such data. It offers an
easy-to-use API that can be connected to all leading RDF storage solutions. It allows you
to connect with SPARQL endpoints and create applications that leverage the power of
Linked Data and Semantic Web.

Also, this component uses a public docker image based on RDF4J project.

Table 19 Gatekeeper RDF4J OpenShift artifacts list

File Name Kind #

data-federation-pvc-rdf4j-logs.yaml PersistentVolumeClaim 1

datafederation-pvc-rdf4j.yaml PersistentVolumeClaim 2

rdf4j-service.yaml Service 3

rdf4j-deployment.yaml Deployment 4

rdf4j-route.yaml Route 5

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 94

Figure 67 Gatekeeper RDF4J OKD deployment schema

As shown in the above figure the RDF4J Server needs:
• one service for REST communication through different components
• one route for routing incoming connection to its service
• one persistent volume to store its log about its work, mounted on

“/usr/local/tomcat/logs” directory
• one persistent volume to store the received data, mounted on “/var/rdf4j”

directory

 Deployment Scenarios [UPDATED]
This section provides an overview of the possible deployment alternatives of northbound
API of the Data Federation & Integration into OKD platform. The OpenShift artifact
produced for the DFI will be deployed onto the OKD platform provided by task 4.1. OKD is
a distribution of Kubernetes [12] - an open-source system aiming to automatize the
deployment, to scale, and to manage of containerized applications - optimized for
continuous application development and multi-tenant deployment. OKD embeds
Kubernetes and extends it with security and other integrated concepts. OKD adds
developer and operations-centric tools on top of Kubernetes to enable rapid application
development, easy deployment and scaling, and long-term lifecycle maintenance for
small and large teams

OKD is a sibling Kubernetes distribution to Red Hat OpenShift.
OpenShift Container Platform (formerly known as OpenShift Enterprise) is Red Hat's on-
premises private platform as a service product, built around application containers
powered by Docker, with orchestration and management provided by Kubernetes, on Red
Hat Enterprise Linux and Container Linux (formerly known as CoreOS or RHCOS).

The figure below about “Data Federation & Integration deployed in OKD cluster" gives a
general overview about how the GK Platform could be deployed on (HPE) GK CloudL.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 95

Security, updates, and maintenance can be managed centrally ensuring the highest level
of service. GATEKEEPER Platform will be responsible to ensure separation of data and
multitenancy. All the accesses from external applications to GK platform are managed by
TMS (task 4.2) and GTA (task 4.5). As stated by the deliverable D3.2 GK offers, to the pilots
involved in project, the following main alternatives of deployment:

1. Pilots own a private space (virtual cluster) on GK Cloud and share some data
with GK Platform. In case Pilots require to keep part of their data isolated from the
other pilots, GK Cloud can provide private storage spaces in dedicated private “pilot
cloud tenants”, while the GK Platform remain centralized. Pilot systems running in
the separate spaces interact with the Platform to exploit its services from within GK
Cloud. GK CLOUD PLATFORM - OKD figure shows this alternative where data
shared with Data Federation & Integration and persisted in FHIR and RDF format in
a private and dedicated space (virtual cluster). In this configuration it is assigned a
private virtual cluster to each pilot containing only their data, such data can be
accessed only by the pilots owner of the cluster. When a specific pilot invokes
southbound APIs of DFI to share its data, this one is able to acquire data, transform
them to FHIR and RDF format and, finally, forward them to the specific virtual
cluster belonging to the pilot who sent the data. According to this configuration
each pilot has only access to its private data.

Figure 68 GK CLOUD PLATFORM - OKD

2. Replicas of the GATEKEEPER platform are deployed separately.

To ensure a greater isolation, an alternative deployment is possible which implies
the creation of separated “pilot cloud tenants” within the (HPE) GK Cloud, where
replicas of the GATEKEEPER platform are deployed separately (not only storage as
in the solution above). (note.: for sake of simplicity only the Data Federation &
Integration components (e.g. Integration Engine, RDF-Watcher, FHIR Server, FHIR-
DB, RDF4J Server) are reported within each replica but GTA and TMS are deployed
in each replica as well).

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 96

Figure 69 Data Federation & Integration deployed in OKD cluster

The configuration combines all the single components of DFI described in the
previous sections, i.e., gk-integration-engine, gk-rdf-watcher, gk-fhir-server and
gk-rdf4j. All components are deployed in the same environment but, there is a
whole installation per pilot in a dedicated namespace.

Each pilot specific installation has a specific k8s namespace: in the table below
are listed the pilot names and the related k8s namespace name provided by HPE.

Table 20 Namespace per pilot

Pilot name Namespace name

Puglia pilot1

Aragon pilot2

Saxony pilot3

Basque Country pilot4

Greece UC #a pilot5a

Greece UC #b pilot5b

Cyprus UC #a pilot6a

Cyprus UC #b pilot6b

Milton Keynes (UK) pilot7

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 97

Poland pilot8

Covid-19 pilot9

BANGOR pilot10

SINGAPORE pilot11

TAIWAN pilot12

HONG KONG pilot13

Moreover, there are other three namespaces, one for development purpose,
named ‘dev’, and one other for test purpose, named ‘test’ and one for production
purpose, named ‘prod’.

The installations per pilot are replica of the k8s YAML files but with a different
namespace.

The interaction among all PODs inside the whole cluster is made with ClusterIP
node, implemented with k8s Services. A ClusterIP provides a cluster IP address
accessible only by other PODs and services within in the cluster. No external IP
address is created for the application. To access a POD underlying a cluster
service, other applications in the cluster can use the ClusterIP address of the
service or send a request using the service name. When reached by requests, the
service forwards them to the pods equally, regardless of the clustered IP
addresses of the pods and the worker node on which they are deployed. if it is
not specified a type in a service YAML configuration file, the ClusterIP type is
created by default.

With this configuration all PODs inside the DFI cluster can interact by mean of
ClusterIP node using the assigned name and port without setting the IP of the
node. The advantage of this configuration is that the configuration YAML file to
run the PODs must not be updated each time the IP of the node changes because
the interaction among all the PODs is realized using the name and the port
associated by the ClusterIP node that are statically defined.

When the POD for gk-integration-engine is started, it reads from the spring_json
environment variable the service names and ports of the gk-fhir-server and gk-
rd4j PODs deployed in the pilot specific namespace. Thank to this configuration
even if some POD of gk-fhir-server and rdf4j is deleted and recreated, it is not
needed to restart the PODs of gk-fhir-server to reload the endpoint of the created
POD of fhir-server and rdf4j because they are statically defined into server
ClusterIP.

The access point among Pilots applications and DFI Cloud platform are the OKD
Routes. Such routes enable the interactions of the PODs running inside the DFI
cluster with the external applications using defined host names.

Following are briefly described the steps performed by a pilot X to share its data
with the DFI and the steps followed by DFI to store them within GK cloud Service:

1. Pilot X invokes the APIs defined in OKD Route to retrieve the bearer
token. (TMS)

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 98

a. Route forwarding the request to the service ClusterIP that checks
if the credential sent by the PILOT are correct. (TMS)

2. After that the TMS forward the request to the required service.

3. Pilot X invokes one of two defined southbound APIs (through the TMS)
defined by the route of specific pilot’s gk-integration-engine passing the
data in body.

4. The specific pilot’s gk-integration-engine has an internal apache camel
routine that is able to identify the pilot that is sending data. Based on this
information, data are forwarded to the FHIR REST API by the service of
the gk-fhir-server deployed in the specific pilot’s namespace.

5. fhir-server POD persists data in maria database in FHIR format, store the
resource in the folder shared with RDF Watcher and, eventually send
the resource through the kafka channel. Then the RDF Watcher convert
the stored resources to RDF and invokes the API using the service of the
rdf4j POD that persist them.

6. Pilot X can access to persisted FHIR and RDF data by means the
northbound APIs hosted on the services associated Routes.

All calls to southbound and northbound APIs are expected to be trusted since the
interaction with the Data Federation & Integration is mediated by GTA (D4.14) &
TMS (D4.9).

 Pilots’ needs [NEW]
This information is added in this version of the deliverable in order to summarise within a
table the Pilots’ needs. We can also find new pilots (i.e. Covid-19, Bangor, Singapore,
Taiwan, Hong Kong) who joined in the last period just before the deliverable release. So,
they are mentioned here because it was possible to collect their needs, while tasks related
to design, data model, and so on (as the ones described in paragraph 1.2) have not yet
started. For some Asian pilots also the needs elicitation is in progress and this is the reason
why the table is missing of their information.

To continue, the first step was to gather such information through a collaboration tool,
Trello [23], that organizes a task/project into boards. In this way, it tells the teamwork
what's being worked on, who's working on what, and where something is in a process. In
order to give an example of its usage related to pilots’ needs collection within the GK
project, in Figure 70 a screenshot is reported.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 99

Figure 70 Trello: a general overview of its usage in GK project

Then the needs are summarised in Table 21. For each Pilot an ‘X’ is reported on the column
of the related GK component (FHIR Server, Integration Engine, RDF) for which integration
has been requested. If the integration was not needed for a component an ‘-’ is reported.

At the time of the deliverable release, the still unexpressed pilots’ needs are represented
by empty cells.

Table 21 Pilots’ needs

Pilot GK-FHIR Server GK-IE RDF

Puglia X X X

Aragon X

Saxony X X X

Basque Country X - -

Greece X - -

Cyprus X - -

Milton Keynes X X X

Poland X X -

Covid-19 X - -

Bangor X X X

Singapore X

Taiwan X

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 100

Hong Kong X

 OKD Installation procedure [NEW]
To explain the OKD installation procedure. here below are shown some screenshots of
the overall procedure and each step is described as follows.
First of all (red circle with number 1), the user click the button “+Add” on the OKD left side
nav. In the second step (red circle with number 2), the user click the “YAML” tile.

Figure 71 OKD: add resource menu

To continue, in Figure 72 are reported the next two steps of the procedure. In the step
number three (red circle with number 3 inside), user paste every YAML file content in the
YAML editor following the proposed order (s. 3.1.1). Then, for every described artifact, after
pasted it in the YAML editor, user click the “Create” button (red circle with number 4).

1

2

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 101

Figure 72 OKD: YAML resource editor

After that all components are deployed and started, you can group them into an
application group, as shown in Figure 73.

Figure 73 OKD: Platform gatekeeper-dev namespace screenshot

In a nutshell, the steps for the OKD Installation procedure, can be summarised as:

3

4

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 102

• Click the “+Add” button on OKD left side nav (1)

• Click the “YAML” tile (2)

• Paste every YAML file content in the YAML editor following the proposed order (3)

• For every described artifact, after past it in YAML editor, click the “Create” button
(4)

 OKD How to test the deployed artifacts [NEW]
Once OKD installation procedure is completed, it is possible to test the deployed artifacts.
Here below there are some screenshots in order to lead the user in the testing procedure.
At the ending of the paragraph, a bullet point is reported to briefly sum up all the steps.

Figure 74 OKD: Platform gatekeeper-test namespace screenshot focused on TestDataFederation
pod group

To sum up,
• Click on the “Topology” link from the left side-nav (1)

1

2

3

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 103

• Check if all deployed pods are up and running
• If you would like some details about a specific pod, you can click on it (2) and

inspect all details in the panel that appear on the right side of the page (more
details in the Figure 76)

• If the pod has an associated service, you can see a link on it (3). Then you can
click on this link and, if the service has a web page and not only a REST API, you
can see the application web page, as shown as example in Figure 75.

Figure 75 Web application relative to pod linked route

Figure 76 shows some pod details, as described above, relative to gk-fhir-server. In
particular, on the top of the pod is reported the name of the “OKD Deploy artifact” (red
circle with number 1); then, immediately under the name there is the ‘Health Checks’ tile
about this deploy (red circle with number 2); below, in ‘Pods’ section there are three tabs
and in the second one ‘Resources’ is represented information about ‘Associated POD
instance’ (red circle with number 3); in ‘Services’ section (red circle with number 4) is
reported information about the ‘Linked service’ to this pod; finally, ‘Routes’ section (red
circle with number 5) gives information on the ‘Linked route’ associated to this pod.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 104

Figure 76 OKD Platform: pod details

To summarise, there are five main details linked to pod details:
• Name of the “OKD Deploy artifact” (1)
• Health check about this deploy (2)
• Associated POD instance (3)
• Linked service (4)
• Linked route (5)

Finally, to collect bugs or issues detected by the pilot through the test, it has been used
Slack [24]. In fact, it is a collaboration hub with several features that make easy to contact
a teamwork and collaborate with it — whether in the same office or especially around the
world (as GK project is)— and also to stay aligned with new development, updates and so
on (s. Figure 77).

1

2

3

4

5

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 105

Figure 77 Slack tool: a general overview of its usage in GK project

 CI and CD for Data Federation: Jenkins [NEW]
During the last period in which the deliverable was drawn up, HPE made available Jenkins
and Git for continuous integration (CI) and continuous development (CD) for Data
Federation.

Jenkins [30] is an open source automation server that provides plugins to support building,
deploying and automating projects while Git is a free and open source distributed version
control system designed to handle everything from small to very large projects with
speed and efficiency.

ENG made up and tested CI/CD chain for the GK-FHIR Server version 4 and GK-IE
components. ENG will also support the GK partners regarding automation processes of
the other DF components probably after the deliverable release and it will customise
YAML files so that these ones will make automatic the build and integration process.

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 106

4 Conclusion
This deliverable is providing the final version of Data Federation & Integration as well as
the description of how it will interact with the overall Gatekeeper platform. Starting from
the new/updated requirements collected during the several remote calls made with each
pilot involved in the project, the DFI design has been updated together with the new
version of the prototype as a microservice framework, consisting of four main components
(gk-integration-engine, gk-fhir-server, gk-rdf-watcher and gk-rdf4j), that expose specific
southbound and northbound APIs to collect heterogeneous data coming from electronic
health records and devices in order to convert and store such data into FHIR server and
RDF repository according to the GK-FHIR-Profile, defined in the task 3.5. In addition, more
information about pilots’ need have been collected in order to customise and improve the
DFI as expected by the projects pilots. Open Callers have been included in this second
version of the deliverable and new conversion flow are added in order to support their
requests.

Furthermore, such changes have been also useful for improving the performance and
integrability with the other platform components and within the HPE deployment
environment.

Data Federation & Integration component has been dockerized and deployed on private
ENG server to perform some initial integration tests using the Auth 2.0 authentication
implemented with keycloak tool. Then, this functionality was in charge of GTA
(Gatekeeper Trust Authority) and the TMS (Thing Management System).

Thanks to DFI framework a common semantic model, based on HL7-FHIR, is defined that
can be used to retrieve and process persisted data, hiding the problem of having them in
heterogeneous formats since they come from different applications where each one uses
a different model representation. The main advantage of this approach is that each task
can play with Gatekeep data only knowing the defined GK-FHIR-Profile and not the
specific models used by the pilot’s applications. Moreover, new set of the transformation
rules between the data model (task 3.4) to the GK-FHIR-Profile (task 3.5).

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 107

5 References
[1] HAWTIO https://hawt.io/

[2] FHIR Implementation Guide https://build.fhir.org/ig/gatekeeper-project/gk-fhir-
ig/index.html

[3] OpenShift https://cloud.redhat.com/learn/what-is-openshift

[4] Apache Camel FHIR Component . (n.d.). Retrieved from
https://camel.apache.org/components/latest/fhir-component.html

[5] Inotifyd https://wiki.alpinelinux.org/wiki/Inotifyd

[6] Docker. (n.d.). Retrieved from https://www.docker.com/

[7] Docker Container. (n.d.). Retrieved from
https://www.docker.com/resources/what-container

[8] fhirtordf. (n.d.). Retrieved from https://github.com/BD2KOnFHIR/fhirtordf

[9] HAPI FHIR. (n.d.). Retrieved from https://hapifhir.io/

[10] HL7-FHIR. (n.d.). Retrieved from https://www.hl7.org/fhir/

[11] keycloak. (n.d.). Retrieved from https://www.keycloak.org/

[12] Kubernetes ingress. (n.d.). Retrieved from
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

[13] Maria DB. (n.d.). Retrieved from https://mariadb.org/

[14] Microk8s. (n.d.). Retrieved from https://microk8s.io/

[15] Resource Description Framework (RDF) Model and Syntax. (n.d.). Retrieved from
http://www.w3.org/RDF/Group/WD-rdf-syntax/

[16] RML. (n.d.). Retrieved from https://rml.io/docs/

[17] RML. (n.d.). Retrieved from https://rml.io/specs/rml/

[18] Spring Java. (n.d.). Retrieved from https://spring.io/

[19] Tomcat. (n.d.). Retrieved from http://tomcat.apache.org/

[20] URI. (n.d.). Retrieved from
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

[21] W3C. (n.d.). Retrieved from https://www.w3.org/

[22] HPE Guide “T4.1 How to access HPE GK Data Centre”

[23] Trello https://help.trello.com/article/708-what-is-trello

[24] Slack https://slack.com/intl/en-au/help/articles/115004071768-What-is-Slack-

[25] T3.5 D3.9 ‘D3.5-GATEKEEPER HL7 FHIR optimization for IoT and Smart and healthy
living environments’

[26] Google Fit https://www.google.com/fit/

[27] Fitbit https://www.fitbit.com/global/eu/home

[28] iHealth https://ihealthlabs.eu/it/

[29] Biobeat https://www.bio-beat.com/

https://hawt.io/
https://build.fhir.org/ig/gatekeeper-project/gk-fhir-ig/index.html
https://build.fhir.org/ig/gatekeeper-project/gk-fhir-ig/index.html
https://cloud.redhat.com/learn/what-is-openshift
https://camel.apache.org/components/latest/fhir-component.html
https://wiki.alpinelinux.org/wiki/Inotifyd
https://www.docker.com/
https://www.docker.com/resources/what-container
https://github.com/BD2KOnFHIR/fhirtordf
https://hapifhir.io/
https://www.hl7.org/fhir/
https://www.keycloak.org/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://mariadb.org/
http://www.w3.org/RDF/Group/WD-rdf-syntax/
https://rml.io/docs/
https://rml.io/specs/rml/
https://spring.io/
http://tomcat.apache.org/
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://www.w3.org/
https://help.trello.com/article/708-what-is-trello
https://slack.com/intl/en-au/help/articles/115004071768-What-is-Slack-
https://www.google.com/fit/
https://www.fitbit.com/global/eu/home
https://ihealthlabs.eu/it/
https://www.bio-beat.com/

D4.12 – Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 108

[30] Jenkins https://www.jenkins.io/

[31] Eclipse RDF4J https://rdf4j.org/

[32] RDF4J workbench https://rdf4j.org/documentation/tools/server-workbench/

[33] Activage project http://www.activageproject.eu/

[34] Open mHealth https://www.openmhealth.org/

[35] SenML format https://datatracker.ietf.org/doc/html/rfc8428

https://www.jenkins.io/
https://rdf4j.org/
https://rdf4j.org/documentation/tools/server-workbench/
http://www.activageproject.eu/
https://www.openmhealth.org/
https://datatracker.ietf.org/doc/html/rfc8428

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 109

Appendix A [NEW]
Here below are reported the mapping rules analysed with the support of the data models related accountable pilot and all the FHIR data
types ValueSet used in the mapping process defined by HL7.

A.1 Data models to HL7-FHIR mapping rule, terminologies and FHIR [NEW]
A.1.1 Puglia Data Model to HL7-FHIR
Patient (FHIR::Patient)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

patient_id String The identifier of the
patient

Patient.identifier[0].value Patient.identifier[0].system=GK-

ID.PATIENT.PUGLIA.SYSTEM

clinicalExaminetion ClinicalExaminetion

Observation

ClinicalExamination (FHIR::Observation | Condition)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Observation.status="final"

Observation.category = GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

Observation.subject=<reference to
the patient>

(Extension) Observation.GK-
EXT..patientAge = <patientAge>

This mapping is applied to all fields of the
entity ClinicalExamination that are mapped
on Observation resource. An Observation
resource is created for each attribute except
data and patientAge where these values are
added to each Observation or Condition
created for this entity.

date Data Date of the performed the
clinical examination

 Observation.effective This field is set to each observation created
in for this entity.

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 110

glycosylated
Hemoglobin

float Glycosylated Hemoglobin -
outcome variable

Unit: mmol/mol

glycosylatedHem
oglobin

Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-VS.UCUM.
MILLIMOLE_PER_MOLE

Observation.code = GK-
VS.OBSERVATION-
CODE.GLYCOSILATED_EMOGLOBI
N

totalCholest
erol

float Total Cholesterol

Unit: mg/dL

totalCholesterol Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-
CODE.TOTAL_CHOLESTEROL

hdl float HDL

Unit: mg/dL

hdl Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-CODE.HDL

ldl float LDL

Unit: mg/dL

ldl Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 111

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-CODE.LDL

triglycerides float TRIGLYCERIDES

Unit: mg/dL

triglycerides Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-
CODE.TRIGLYCERIDES

tcHdl float TC/HDL

Unit: mg/dL

tcHdl Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.code = GK-
VS.OBSERVATION-CODE.TC_HDL

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

serumCreati
nine

float Serum Creatinine

Unit: mg/dL

serumCreatinine Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-CODE.
SERUM_CREATININE

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 112

albuminuria
Creatininuria
Ratio

float Albuminuria/Creatininuria ratio

Unit: mg/g

albuminuriaCreati
ninuriaRatio

Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_GRAM

Observation.code = GK-
VS.OBSERVATION-
CODE.ALBUMINURIA_CREATININ
URIA_RATIO

gptAlt float GPT/ALT

Unit: U/l

gptAlt Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.ENZYME_UNIT_PER_LIT
ER

Observation.code = GK-
VS.OBSERVATION-CODE.GPT_ALT

gotAst float GOT/AST

Unit: U/l

gotAst Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.ENZYME_UNIT_PER_LIT
ER

Observation.code = GK-
VS.OBSERVATION-CODE.GOT_AST

gammaGt float Gamma GT

Unit: UI/l

gammaGt Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.INTERNATIONAL_UNIT_
PER_LITER

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 113

Observation.code = GK-
VS.OBSERVATION-
CODE.GAMMA_GT

alkalinePhos
phatase

float Alkaline Phosphatase

Unit: UI/l

alkalinePhosphat
ase

Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.INTERNATIONAL_UNIT_
PER_LITER

Observation.code = GK-
VS.OBSERVATION-
CODE.ALKALINE_PHOSPHATASE

uricAcid float Uric acid

Unit: mg/dL

uricAcid Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-VS.UCUM.

Observation.code = GK-
VS.OBSERVATION-
CODE.URIC_ACID

eGFR float eGFR

Unit: ml/min/1.73m2

eGFR Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.MILLIGRAM_PER_DECILI
TER

Observation.code = GK-
VS.OBSERVATION-CODE.E_GFR

nitrites Boolean Nitrites

Present (true)/Absent (false)

nitrites Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LAB
ORATORY

Observation.value is Boolean

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 114

Observation.code = GK-
VS.OBSERVATION-CODE.NITRITES

patientAge Int Patient age (Extension)
Observation.GK-
EXT..patientAge =
<patientAge>

Condition.onset

Condition.onset is Age For the Observation is value is mapped as an
extension while for Condition this value is
mapped on Condition.onset where onset is
of the type Age

systolicPress
ure

Int Systolic pressure

Unit: mmHg

 Observation.compo
nent[0].value.value

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

Observation.code = GK-
VS.OBSERVATION-
CODE.BLOOD_PRESSURE_PANEL_
WITH_ALL_CHILDREN_OPTIONAL

Observation.component[0].value is
Quantity

Observation.component[0].value =
GK-VS.UCUM.
MILLIMETER_OF_MERCURY

Observation.component[0].code =
GK-VS.OBSERVATION-
CODE.SYSTOLIC_BLOOD_PRESSU
RE

For these two measurements is created a
unique Observation resource

diastolicPres
sure

Int Diastolic Pressure

Unit: mmHg

 Observation.compo
nent[1].value.value

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

Observation.component[1].value is
Quantity

Observation.component[1].value =
GK-VS.UCUM.
MILLIMETER_OF_MERCURY

Observation.component[1].code =
GK-VS.OBSERVATION-

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 115

CODE.DIASTOLIC_BLOOD_PRESS
URE

weight float Weight

Unit: Kg

 Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.WEIGHT

Observation.code = GK-
VS.OBSERVATION-
CODE.BODY_WEIGHT

height float Heigth

Unit: m

 Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

Observation.value is Quantity

Observation.value = GK-VS.UCUM.
METER

Observation.code = GK-
VS.OBSERVATION-
CODE.BODY_HEIGHT

yearsOfDiag
nosedDiabet
es

int Years of Diagnosed Diabetes

Unit: year

 Observation.value.v
alue

Observation.category=GK-
VS.OBSERVATION.CATEGORY.SUR
VEY

Observation.value is Quantity

Observation.value = GK-
VS.UCUM.YEARS

Observation.code = GK-
VS.OBSERVATION-
CODE.YEARS_WITH_DIABETES

hepaticSteat
osis

Boolean Hepatic statosis

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.STEATOSIS_
LIVER

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 116

Condition.recordedData=<date>

hypertension Boolean Hypertension

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.HYPERTENSI
VE_DISORDER

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

Condition.recordedData=<date>

heartFailure Boolean Heart failure

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.HEART_FAIL
URE

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

Condition.recordedData=<date>

bpco Boolean BPCO

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.CHRONIC_O
BSTRUCTIVE_LUN
G

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

Condition.recordedData=<date>

chronicKidn
eyDisease

Boolean Chronic Kidney disease

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.CHRONIC_KI
DNEY_DISEASE

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

Condition.recordedData=<date>

ischemicHea
rtDisease

Boolean Ischemic Heart disease

Present (true)/Absent (false)

 Condition.code=
GK-VS.CONDITION-
CODE.ISCHEMIC_H
EART_DISEASE

Condition.suject=<reference to
patient>

Condition.onset=<patientAge>

Condition.recordedData=<date>

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 117

A.1.2 Aragon Data Model to HL7-FHIR

Patient/Practitioner (FHIR::Patient | ResearchSubject| ResearchStudy)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 ResearchStudy.status(“active”)

ReserachSubject.status(“onstudy”)

ReserachSubject.individual(Refere
nce(participanti_id))

ReserachSubject.study(Reference(t
his.ResearchStudy))

participant_i
d

String The unique identifier of the
patient.

N.A Patient.identifier[0].
value

Patient.identifier[0].system=GK-VS.
GK-ID.PATIENT.ARAGON.SYSTEM

date Date Date of diagnose dd/mm/yyyy Condition.recordedDate

year_birth Numeric Year of birth yyyy Patient.birthDate

gender String The gender of the participant. FHIR :
http://hl7.org/fhi
r/gender-identity

 Patient.gender

enter_date Date Date of recruitment / entry in
the project

dd/mm/yyyy ResearchSubject.period.start

exit_date Date Date of exit / drop out/ drop off
of the project

dd/mm/yyyy ResearchSubject.period.end

primary_dise
ase

String Primary disease at enrolment ICD-9, ICD-10 and
ICPC-2

Condition.code.codi
ng.code

Condition.subject=Reference(partici
pant_id)

Condition.category=GK-
VS.CONDITION-
CATEGORY.PRIMARY_DISEASE

Condition.code.cofding.system=“htt
p://terminology.hl7.org/CodeSyst
em/condition-category”

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 118

health_area String Health area of the participant
(Administrative / Health care
center)

ARAGON|01] ,
[ARAGON|02

ReserachStudy.loca
tion.coding.code

ReserachStudy.location.coding.syst
em=”"https://www.aragon.es/Cod
eSystem/health-area"”

death Date Date of death or 00/00/0000 if
death did not occur

dd/mm/yyyy Patient.deceased

Social assessment (FHIR::Observation | Patient)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

participant_id String The unique
identifier of the
patient.

N.A Observation.subject
=Reference(particip
ant_id)

date Date Date of record dd/mm/yyyy Observation.effectiv
e

Observation.effective is dateTime

people_living Numeric Number of
people older than
18 living in the
house hold
(patient excluded)

N/A Observation.value.v
alue

Observation.status = GK-
VS.OBSERVATION.STATUS.FINAL

Observation.subject=Reference(par
ticipant_id)

Observation.category= GK-
VS.OBSERVATION-
CATEGORY.SOCIAL_HISTORY

Observation.code = GK-
VS.OBSERVATION-
CODE.PEOPLE_LIVING

Observation.value is Quantity

marital_status Char Whether the
participant is
married or not

http://hl7.org/fhir/Value
Set/marital-status

Patient.maritalStatu
s

Habits (FHIR::Observation)

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 119

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

participant_id String The unique
identifier of the
patient.

N.A Observation.subject
=Reference(particip
ant_id)

date Date Date of record dd/mm/yyyy Observation.effectiv
e

Observation.effective is dateTime

tobacco-use String Number of
cigarettes per day
during the last
month

https://loinc.org/72166-
2/

Observation.value Observation.status =GK-
VS.OBSERVATION.STATUS.FINAL

Observation.subject=Reference(par
ticipant_id)

Observation.category= GK-
VS.OBSERVATION-
CATEGORY.SOCIAL_HISTORY

Observation.code = GK-
VS.OBSERVATION-
CODE.TOBACCO_SMOKING_STAT
US

Observation.value is String

alcohol-
consumption

Numeric Number of days
having an
alcoholic drink
during the last
month

1 - Daily

2 - (5-6) days per week

3 - (3-4) days per week

4 - (1-2) days per week

5 - (1-3) days per month

6 - Less than once a month

Observation.value Observation.status =GK-
VS.OBSERVATION.STATUS.FINAL

Observation.subject=Reference(par
ticipant_id)

Observation.category= GK-
VS.OBSERVATION-
CATEGORY.SOCIAL_HISTORY

Observation.code = GK-VS.
OBSERVATION-CODE.
HISTORY_OF_ALCOHOL_USE

Observation.value is String

physical_activity Numeric Level of physical
activity during the
last month

0 - None (bed)

1 - Very Low (home)

Observation.value Observation.status =GK-
VS.OBSERVATION.STATUS.FINAL

https://loinc.org/72166-2/
https://loinc.org/72166-2/

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 120

2 - Low (basic needs
outside home)

3 - Moderate (walk < 10000
steps)

4 - Intense (> 10000 steps)

5 - Vigorous (sport)

Observation.subject=Reference(par
ticipant_id)

Observation.category= GK-
VS.OBSERVATION-
CATEGORY.SOCIAL_HISTORY

Observation.code = GK-
VS.OBSERVATION-
CODE.EXERCISE_ACTIVITY

Observation.value is String

Clinical Activity (Admissions – Hospitalization) (FHIR::Encounter)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Encounter.status=GK-
VS.ENCOUNTER-STATUS.FINAL

Encounter.class=GK-
VS.ENCOUNTER-
CLASS.INPATIENT_ENCOUNTER

participant_id String The unique
identifier of the
patient.

N.A Encounter.subject=
Reference(participa
nt_id)

date Date Date of record dd/mm/yyyy (Extension)
Encounter.GK-
EXT.registeredDate

admission_date Date Date of admission dd/mm/yyyy Encounter.period.st
art

discharge_date Date Date of discharge dd/mm/yyyy Encounter.period.e
nd

indication String Main reason for
admission

ICD-10 Encounter.reasonC
ode.[0].coding.code

Encounter.reasonCode.[0].coding.s
ystem=<link ICD_10>

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 121

admission_planne
d

Numeric Admission
planned /
unplanned

1 - Planned

2 - Unplanned

999 - Missing answer

Encounter.type Enconter.type is filled with one of the values
listed in the table GK-VS.ENCONTER-TYPE

origin Numeric Place of
residence before
admission

1 - Home

2 - Nursing home

4 - Other

999 - Missing answer

Encounter.hospitali
zation.admitSource

 Encounter.hospitalization.admitSource is
filled with of the values listed in the table GK-
VS.ENCOUNTER-HOSPITALIZATION

destination Numeric Place of
residence after
admission

1 - Home

2 - Nursing home

3 - Death

4 - Other

999 - Missing answer

Encounter.hospitali
zation.dischargeDis
position

 Encounter.hospitalization.admitSource is
filled with of the values listed in the table GK-
VS.ENCOUNTER-HOSPITALIZATION

Clinical Activity (Consultation) (FHIR::Encounter)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Encounter.status=GK-
VS.ENCOUNTER-STATUS.FINAL

participant_id String The unique
identifier of the
patient.

N.A Encounter.subject=
Reference(participa
nt_id)

date Date Date of record dd/mm/yyyy (Extension)
Encounter.GK-
EXT..registeredDate

contact_date Date Date of contact dd/mm/yyyy Encounter,period.st
art

contact_person String Who made the
care intervention

1 - GP

2 - Nurse

Encounter.participa
nt[0].type

 Encounter.participant.type is one of the
value present in the table GK-
VS.ENCOUTER-PARTICIPANT-TYPE

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 122

3 - HCP Specialist

4 - Emergency
professional

5 - Social worker

6 - Other social profile

7 - Joint intervention

8 - Missing data

contact_type String Type of contact 1 - PC premises

2 - Hospital premises

3 - PC Emergency

4 - Hospital Emergency

5 - Telephone

6 - Home visit

7 - Written (email/sms)

8 - Missing data

Encounter.class PC premises = Encounter.class=GK-
VS.ENCOUNTER-CLASS.PC_PREMISES

hospital premises = Encounter.class=GK-
VS.ENCOUNTER-
CLASS.INPANTIENT_ENCOUNTER

PC emergency = Encounter.class=GK-
VS.ENCOUNTER-CLASS.PC_EMERGENCY

hospital emergency = Encounter.class=GK-
VS.ENCOUNTER-CLASS.EMERGENCY

telephone = Encounter.class=GK-
VS.ENCOUNTER-CLASS.VIRTUAL

home visit = Encounter.class=GK-
VS.ENCOUNTER-CLASS.HOME_HEALTH

written = Encounter.class=GK-
VS.ENCOUNTER-CLASS.VIRTUAL

contact_planned Numeric Admission
planned /
unplanned

1 - Planned

2 - Unplanned

999 - Missing answer

Encounter.type Enconter.type is filled with one of the values
listed in the table GK-VS.ENCONTER-TYPE

service String Name of the
service where the
consultation takes
place

List codes:
1. PRIMARY CARE
CONSULTATIONS

2. PRIMARY CARE
EMERGENCIES

Encounter.serviceT
ype.text

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 123

3. SPECIALIZED CARE
CONSULTATIONS

4. SPECIALIZED CARE -
EMERGENCY ROOM

5. SOCIAL CARE

6. OTHER

Note. Codes for services
under the regional EHR are
being revised so in case
there is a stable version for
coding services, it will be
used in this field.

Prescribed Medication (FHIR::MedicationRequest)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 MedicationRequest.intent=”order”

participant_id String The unique
identifier of the
patient.

N.A Medication.subject=
Reference(participa
nt_id)

date Date Date of record dd/mm/yyyy MedicationRequest.authoredOn

status Binary Status of the
prescription

0 – Inactive

1 - Active

MedicationRequest.
status

 if status == 0 then
MedicationRequest.status=”stopped” else if
status == 1 then
MedicationRequest.status=”active”

begin_date Date start date of
treatment

NA MedicationRequest.
dosageInstruction.ti
ming.bounds.start

MedicationRequest.dosageInstructi
on.timing.bounds is Period

end_date Date 00/00/0000 if
end_date is not
defined

NA MedicationRequest.
dosageInstruction.ti
ming.bounds.start

MedicationRequest.dosageInstructi
on.timing.bounds is Period

active principle String Name of the
active principle

ATC coding MedicationRequest.
medication.text

MedicationRequest.medication is
CodeableConcept

The display of ATC is not provided

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 124

sequence String Moments of day
for medicine
intake

String indicating moments
of day in which medicine
should be taken
E.g.: 2 pills at breakfast, or 1
pulse at supper

data format:

NUMBER |
PRESENTATION
|FREQUENCY

where FREQUENCY can
be

BREAKFAST|LUNCH|DINN
ER)

MedicationRequest.
dosageInstruction.t
ext

calendar String Weekdays to
apply sequence

String with weekdays in
English in which medicine
should be taken

data format, if more than
one:

mon|tue|sat

MedicationRequest.
dosageInstruction.ti
ming.repeat.dayOf
Week

Dose Numeric Value of the dose
to be taken

 MedicationRequest.
dosageInstruction.d
oseAndRate,dose.v
alue

MedicationRequest.dosageInstructi
on.doseAndRate,dose is Quantity

Unit String Code of
measurement

E.g. mg -> milligram MedicationRequest.
dosageInstruction.d
oseAndRate,dose.v
alue

MedicationRequest.dosageInstructi
on.doseAndRate,dose.unit

The code of unit of measure is not provided.

Clinical variables value (FHIR::Observation)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Observation.status=”final”

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 125

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

participant_id String The unique
identifier of the
patient.

N.A Observation.,subjec
t=Reference(partici
panti_id)

clinical_variable String Name of the
clinical variable

LOINC CODES
descriptive string

Observatiob.code.te
xt

Value String Value captured Observation.value.v
alue

Qbservation.value is Quantity

Unit String Unit Code descriptive string Observation,value.u
nit

Symptom (FHIR:: Observation)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Observation.category[0]=GK-
VS.OBSERVATION-
CATEGORY.SURVEY

participant_id String The unique
identifier of the
patient.

N.A Observation.,subjec
t=Reference(partici
panti_id)

Date Date of
measurem
ent

Date of the
collection of
symptoms

 Observation.effectiv
e

Observation.effective is DateTime

Symptom String Name of the
symptom

descriptive string Observation.code.te
xt

Value / Intensity String 0 – No

1 – Low

2 - Mild

3– Moderate

Observation.value Observation,value is String

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 126

4 - Severe

5 - Extreme

Form and questionnaire (PROMS) (FHIR::QuestionnaireResponse)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 QuestionnaireResponse.status
=”completed”

participant_id String The unique
identifier of the
patient.

N.A QuestionnaireResp
onse.subject=Refer
ence(participant_id)

completion_date Date Date of record dd/mm/yyyy QuestionnaireResp
onse.authored

record_id Numeric Identification of
the record that
contains all the
answers to the
same
questionnaire

 QuestionnaireResp
onse.identifier.value

QuestionnaireResponse.identifier.s
ystem=GK-
ID.QUESTIONNAIRE_RESPONSE.Q
UESTIONNAIRE_RESPONSE_ARAG
ON

questionnaire_id String Identification of
the questionnaire

The list of questionnaires /
scales will be published
later and may include but
not be restricted to Zarit,
Barthel, PAM, Barber,
E5QD,…

QuestionnaireResp
onse.questionnaire

question_id Numeric Identification of
the number of the
question to which
the answer
corresponds to

N/A QuestionnaireResp
onse.item.linkId

answer Numeric Answer to the
question in the
specific
questionnaire

Specific codes apply to
each questionnaire

QuestionnaireResp
onse.item.answer.v
alue

QuestionnaireResponse.item.answ
er.value is String

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 127

Comorbidity (FHIR::CONDITION)

Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

 Condition.catergory=GK-
VS.CONDITION-
CATEGORY.COMORBIDITY

participant_id String The unique
identifier of the
patient.

N.A Condition.,subject=
Reference(participa
nti_id)

date Date Date of record dd/mm/yyyy Condition.recorded
Date

comorbidity String Secondary
disease at
enrolment

ICD-10 or ICPC-2

Note:

Comorbidity does not have
an specific code in ICD-
10/9, the comorbidity is
shown when a patient has
multiple codifications

Condition.code.text

initial_date Date Onset / record of
the episode

 Condtion.onset.start

end_date Date End date of the
episode

00/00/0000 if
not specified

 Condtion.onset.end

active Binary 0 – NO / 1 - YES Condition.clinicalSt
atus

 if active==0 then
Condition.clinicalStatus=”active” else if
active==1 then
Condition.clinicalStatus=”inactive”

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 128

A.1.3 Poland Data Model to HL7-FHIR

Patient (FHIR::Patient)
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

ID String The unique
identifier of the
patient.

N.A Patient.identifier[0].v
alue

Patient.identifier[0].system=GK-
ID.PATIENT.POLAND

email
String The email of the

patient FHIR:

Patient.telecom

Patient.telecom[0].v
alue

Patient.telecom[0].code=”email”

firstname
String The first name of

the patient
N.A. Patient.name[0].fam

ily

lastname
String The last name of

the patient
N.A. Patient.name[0].give

n[0]

birthdate
Date The date of birth

of the patient
FHIR:

Patient.birthDate

Patient.birthDate

gender
String The gender of the

patient.
FHIR:

Patient.gender

Patient.gender

language
String The system

language that
patient wants to
use the system

LanguageCode
(PL/EN)/EN)

Patient.communicat
ion.language

If language=”EN”

then
Patient.communication[0].language
.coding[0].code = “en”

Patient.communication[0].language
.coding[0].display = “English”

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 129

Patient.communication[0].language
.coding[0].system =
“http://hl7.org/fhir/ValueSet/lang
uages”

If language=”PL/EN”

then
Patient.communication[0].language
.coding[0].code = “pl”

Patient.communication[0].language
.coding[0].display = “Polish”

Patient.communication[0].language
.coding[0].system =
“http://hl7.org/fhir/ValueSet/lang
uages”

Patient.communication[1].language.
coding[0].code = “en”

Patient.communication[1].language.
coding[1].display = “English”

Patient.communication[1].language.
coding[0].system =
“http://hl7.org/fhir/ValueSet/lang
uages”

Observation (FHIR::Observation | Condition)
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

(observation|Conditi
on).code

If Observation.code = "33747003" or
“85354-9” or "8480-6" or "8462-4" or
"258158006" or, "27113001" or
"713137006" or "50373000" or
"248365001" or"60621009"
or"366319001" or "256668009" or

http://hl7.org/fhir/ValueSet/languages
http://hl7.org/fhir/ValueSet/languages

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 130

"32457005" then Observation is
Mapped to Observation

If Observation.code ="I11" ot "I50" or
"E78.0" or "E11" or "E03" or "J44" or
"N18" the Observation is Mapped to
Condition

ID Numeric The unique
identifier of the
Observation

N.A
N/A

patientID Reference
to patient
unique id

Who and/or what
the observation is
about

Unique patient ID
(observation|Conditi
on).subject

(observation|Condition).subject is
Patient

datetime datetime Clinically relevant
time for
observation

Timestamp
Observation.effectiv
e or Condition.onset

Observation.effective is dateTime

Condition.onset is dateTime

Code FHIR:
CodeableC
oncept

Type of
observation (code
/ type)

SNOMED Code List, ICD-
10 List

Observation.code
or Condition.code

 See tables Poland SNOMED codes and
Poland ICD-10 codes

Category FHIR:
CodeableC
oncept

Classification of
type of
observation

http://hl7.org/fhir/observ
ation-category

N/A

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 131

value [value, unity] Numeric,
String

Observation
quantity

N.A. Observation.value

Condition.status

A.1.3.1 Poland SNOMED codes
CODE FHIR MAPPING

33747003
Observation.code = GK-VS.OBSERVATION-CODE.BLOOD_GLUCOSE

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.MILLIGRAM_PER_DECILITER

85354-9
Observation.code = GK-VS.OBSERVATION-CODE. BLOOD_PRESSURE_PANEL_WITH_ALL_CHILDREN_OPTIONAL

8480-6
Observation.component.code = GK-VS.OBSERVATION-CODE. SYSTOLIC_BLOOD_PRESSURE

8462-4
Observation.component.code = GK-VS.OBSERVATION-CODE. DIASTOLIC_BLOOD_PRESSURE

258158006
Observation.code = GK-VS.OBSERVATION-CODE.SLEEP

Observation.category=GK-VS.OBSERVATION.CATEGORY.ACTIVITY

Observation.value is Quantity

Observation.value = GK-VS.UCUM.MINUTES

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 132

27113001
Observation.code = GK-VS.OBSERVATION-CODE.BODY_WEIGHT

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.KG

713137006
Observation.code = GK-VS.OBSERVATION-CODE.STRESS

Observation.category=GK-VS.OBSERVATION.CATEGORY.ACTIVITY

Observation.value is Quantity

Observation.value = GK-VS.UCUM.PERCENT

50373000
Observation.code = GK-VS.OBSERVATION-CODE.BODY_HEIGHT

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.CENTIMETER

248365001
Observation.code = GK-VS.OBSERVATION-CODE.BODY_WAIST

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.BODY_WAIST

60621009
Observation.code = GK-VS.OBSERVATION-CODE.BMI

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.PERCENT

366319001
Observation.code = GK-VS.OBSERVATION-CODE.BODY_FAT

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 133

Observation.value is Quantity

Observation.value = GK-VS.UCUM.PERCENT

256668009
Observation.code = GK-VS.OBSERVATION-CODE.BODY_MUSCLE

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.PERCENT

32457005
Observation.code = GK-VS.OBSERVATION-CODE.BODY_WATER

Observation.category=GK-VS.OBSERVATION.CATEGORY.VITAL_SIGNS

Observation.value is Quantity

Observation.value = GK-VS.UCUM.PERCENT

A.1.3.2 Poland ICD-10 codes
CODE FHIR MAPPING

I11
Condition.code = GK-VS.CONDITION-CODE.HYPERTENSIVE_DISORDER

I50
Condition.code = GK-VS.CONDITION-CODE.HEART_FAILURE

E78.0
Condition.code = GK-VS.CONDITION-CODE.HYPERCHOLESTEROLEMIA

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 134

E11
Condition.code = GK-VS.CONDITION-CODE.TYPE_2_DIABETES_MELLITUS

E03
Condition.code = GK-VS.CONDITION-CODE.HYPOTHYROIDISM

J44
Condition.code = GK-VS.CONDITION-CODE.OTHER_CHROMIC_OBSTRUCTIVE_PULMONARY_DISEASE

N18
Condition.code = GK-VS.CONDITION-CODE.CHRONIC_KIDNEY_DISEASE

A.1.4 ELIOT Hub Collector Data Model to HL7-FHIR

Observation (FHIR::Observation)
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

id String Logical identity
for a resource.
This is a
temporary
identifier
according to the
standard.

 Observation.id

status FHIR: code The FHIR code is
equivalent to
string and the
value is always
“final”

status = “final” Observation.status Observation.status=”final”

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 135

category FHIR:
CodeableC
oncept

The category of
the measure CodeableConcept.coding[

0].system=”http://terminol
ogy.hl7.org/CodeSystem/
observation-category”

CodeableConcept.coding[
0].value=”vital-signs”

CodeableConcept.coding[
0].value=”Vital Signs”

Observation.catego
ry

Observation.category=GK-
VS.OBSERVATION.CATEGORY.VIT
AL_SIGN

code FHIR:
CodeableC
oncept

This code
represents the
kind of the
measurement

Terms

Observation.code[0].text
=<free text>

Observation.code The accepted code are:

● GK-VS.OBSERVATION-
CODE.BODY_WEIGHT

● GK-VS.OBSERVATION-
CODE.BODY_HEART_RATE

● GK-VS.OBSERVATION-
CODE.BODY_BLOOD_PRESSURE_
PANEL_WITH_ALL_CHILDREN_OP
TIONAL

effectiveDataTime FHIR:
DateTIme Date consists of

Date and time.
Example:

2021-01-
12T11:19:03.65350
112Z

 Observation.effectiv
e

Observation.effective is DateTime

contained FHIR:Refer
ence

The reference to
the device that
has produced the
measurement

 Observation.device = <reference to
the device>

value FHIR:
Quantity

For each kind of
measure is
reported the unit
of measure

 Observation.value.v
alue

Observation.value is Quantity if code == GK-VS.OBSERVATION-
CODE.BODY_WEIGHT then value = GK-
VS:UCUM.KG

if code == GK-VS.OBSERVATION-
CODE.BODY_HEART_RATE then value = GK-
VS.UCUM.HEART_RATE

http://terminology.hl7.org/CodeSystem/observation-category
http://terminology.hl7.org/CodeSystem/observation-category
http://terminology.hl7.org/CodeSystem/observation-category

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 136

if code == GK-VS.OBSERVATION-
CODE.BODY_BLOOD_PRESSURE_PANEL_W
ITH_ALL_CHILDREN_OPTIONAL then value
= is not present and are added two
components

component FHIR:Comp
onent

FHIR component.
for more details.
See the FHIR
specification.

Component.code = Terms

Component.value = Unit of
measure

Observation.compo
nent[x]

Observation.component[0].code =
GK-VS.OBSERVATION-
CODE.SYSTOLIC_BLOOD_PRESSU
RE

Observation.component[0].value =
GK-
VS.UCUM.MILLIMETER_OF_MERC
URY

Observation.component[1].code =
GK-VS.OBSERVATION-
CODE.DIASTOLIC_BLOOD_PRESS
URE

Observation.component[0].value =
GK-
VS.UCUM.MILLIMETER_OF_MERC
URY

These two components are present only for
the measure GK-VS.OBSERVATION-
CODE.BODY_BLOOD_PRESSURE_PANEL_W
ITH_ALL_CHILDREN_OPTIONAL

Device (FHIR::Device)
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

resourceType String The type of the
resource

resourceType=”Device” N/A

id String The FHIR code is
equivalent to
string and the
value is always
“final”

status = “final” N/A

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 137

identifier FHIR:Identif
ier

The identifier of
the device. Only
the field value is
filled

Identifier[0].value=<identifi
er>

Device.identifier[0].v
alue

Device.identifier[1].system=GK-
ID.DEVICE.MEDISANTE.SYSTEM

A.1.5 HealthClouldProxy Data Model to HL7-FHIR
HCP does not have its own data model, but it uses the one provided by the reference Health Proxies (i.e. Google Fit, Fitbit, Biobeat, iHealth)
and for interoperability reasons it also uses the Open mHealth standard data model. When a conversion is required, HCP normalizes the data
retrieved from the Health Proxies in the Open mHealth format.

A.1.6 ENVIRA Data Model to HL7-FHIR

Device (FHIR::Device)
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

resourceType String The type of the
resource

resourceType=”Device” N/A

id String The FHIR code is
equivalent to
string and the
value is always
“final”

status = “final” N/A

identifier FHIR:Identif
ier

The identifier of
the device. Only
the field value is
filled

Identifier[0].value=<identifi
er>

Device.identifier[0].v
alue

Device.identifier[1].system=
https://www.gatekeeper-
project.eu/sid/envira/device

Observation
Attribute Type Description Constraint FHIR Mapping FHIR Assumption FHIR Note

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 138

status FHIR: code The FHIR code is
equivalent to
string and the
value is always
“final”

status = “final” Observation.status Observation.status=”final”

category FHIR:
CodeableC
oncept

The category of
the measure CodeableConcept.coding[

0].system=”
http://hl7.eu/fhir/ig/gk/
CodeSystem/gatekeeper”

Observation.catego
ry

Observation.category=GK-
VS.OBSERVATION.CATEGORY.LIVI
NG_ENVIRONMENT

code FHIR:
CodeableC
oncept

This code
represents the
kind of the
measurement

ENVIRE measures

co2

co

voc

pm10

pm4

pm2.5

pm1

temp

hum

prb

iaqi

eiaqi

tci

covid19RiskIndex

Observation.code The accepted code are:

if (mE.getName().equals(”codeName”))

● GK-VS.OBSERVATION-
CODE.CARBON_DIOXIDE

● GK-VS.OBSERVATION-CODE.
CARBON_MONOXIDE

● GK-VS.OBSERVATION-
CODE.VOLATILE_ORGANIC_COMP
OUNDS

● GK-VS.OBSERVATION-CODE.PM_1

● GK-VS.OBSERVATION-
CODE.PM_2_5

● GK-VS.OBSERVATION-CODE.PM_4

● GK-VS.OBSERVATION-
CODE.PM_10

● GK-VS.OBSERVATION-
CODE.ROOM_TEMPERATURE

● GK-VS.OBSERVATION-
CODE.HUMIDITIY

● GK-VS.OBSERVATION-CODE.PRB

● GK-VS.OBSERVATION-CODE.TCI

● GK-VS.OBSERVATION-CODE.EIAQI

● GK-VS.OBSERVATION-CODE.IAQI

● GK-VS.OBSERVATION-
CODE.COVID_19_RISK

value FHIR:
Quantity

For each kind of
measure is

 Observation.value.v
alue

Observation.value is Quantity

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 139

reported the unit
of measure

A.2 GK-FHIR Data Type [NEW]

A.2.1 FHIR-GK-IDENTIFIERS (GK-ID)

A.2.1.1 PATIENT

PILOT SYSTEM

PUGLIA https://www.gatekeeper-project.eu/sid/puglia/patient

ARAGON https://www.gatekeeper-project.eu/sid/aragon/patient

SAXONY https://www.gatekeeper-project.eu/sid/saxony/patient

POLAND https://www.gatekeeper-project.eu/sid/poland/patient

A.2.1.2 DEVICE
PILOT SYSTEM

MEDISANTE https://www.gatekeeper-project.eu/sid/medisante/device

DEVICE_HCP https://www.gatekeeper-project.eu/sid/hcp/device

SAMSUNG https://www.gatekeeper-project.eu/sid/samsung/device

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 140

OPEN CALLER SYSTEM

ENVIRA https://www.gatekeeper-project.eu/sid/envira/device

A.2.1.3 QUESTIONNAIRE_RESPONSE
PILOT SYSTEM

QUESTIONNAIRE_RESPONSE_ARAGON https://www.gatekeeper-project.eu/sid/aragon/questionnaire-response

A.2.2 FHIR-GK-VALUESETS (GK-VS) [NEW]
A.2.2.1 OBSERVATION-CODE

NAME System Code Display

BODY_WEIGHT http://loinc.org/ 29463-7 Body weight

HEART_RATE http://loinc.org/ 8867-4 Heart rate

BLOOD_PRESSURE_PANEL_WITH_A
LL_CHILDREN_OPTIONAL

http://loinc.org/ 85354-9 Blood pressure panel with all children optional

SYSTOLIC_BLOOD_PRESSURE http://loinc.org/ 8480-6 Systolic blood pressure

DIASTOLIC_BLOOD_PRESSURE http://loinc.org/ 8462-4 Diastolic blood pressure

BODY_HEIGHT http://loinc.org/ 8302-2 Body height

TOBACCO_SMOKING_STATUS http://loinc.org/ 72166-2 Tobacco smoking status

GLYCOSILATED_EMOGLOBIN http://loinc.org/ 59261-8 Hemoglobin A1c/Hemoglobin.total in Blood by IFCC protocol

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 141

TOTAL_CHOLESTEROL http://loinc.org/ 2093-3 Cholesterol [Mass/volume] in Serum or Plasma

HDL http://loinc.org/ 2085-9 Cholesterol in HDL [Mass/volume] in Serum or Plasma

LDL http://loinc.org/ 2089-1 Cholesterol in LDL [Mass/volume] in Serum or Plasma

TRIGLYCERIDES http://loinc.org/ 2571-8 Triglyceride [Mass/volume] in Serum or Plasma

TC_HDL http://loinc.org/ 43396-1 Cholesterol non HDL [Mass/volume] in Serum or Plasma

SERUM_CREATININ http://loinc.org/ 2160-0 Creatinine [Mass/volume] in Serum or Plasma

ALBUMINURIA_CREATININURIA_RA
TIO

http://loinc.org/ 14959-1 Microalbumin/Creatinine [Mass Ratio] in Urine

GPT_ALT http://loinc.org/ 1742-6 Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma

GOT_AST http://loinc.org/ 1920-8 Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma

GAMMA_GT http://loinc.org/ 2324-2 Gamma glutamyl transferase [Enzymatic activity/volume] in Serum or Plasma

ALKALINE_PHOSPHATASE http://loinc.org/ 6768-6 Alkaline phosphatase [Enzymatic activity/volume] in Serum or Plasma

URIC_ACID http://loinc.org/ 3084-1 Urate [Mass/volume] in Serum or Plasma

E_GFR http://loinc.org/ 48642-3 Glomerular filtration rate/1.73 sq M.predicted among non-blacks [Volume
Rate/Area] in Serum, Plasma or Blood by Creatinine-based formula (MDRD)

NITRITES http://loinc.org/ 5802-4 Nitrite [Presence] in Urine by Test strip

HISTORY_OF_ALCOHOL_USE http://loinc.org/

63597-9 During the past 30 days, on how many days did you drink one or more drinks
of an alcoholic beverage

EXERCISE_ACTIVITY http://loinc.org/ 73985-4 Exercise activity

YEARS_WITH_DIABETES https://www.phenxtoolkit.org PX070801190200 PX070801_Diabetes_Mellitus_Year

PEOPLE_LIVING http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

people-living People living

BLOOD_GLUCOSE http://snomed.info/sct 33747003 Glucose measurement, blood

http://snomed.info/sct

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 142

http://loinc.org/ 15074-8 Glucose [Moles/volume] in Blood

STEPS http://loinc.org/ 55423-8 Number of steps in unspecified time Pedometer

SLEEP http://snomed.info/sct

http://loinc.org/

258158006

93831-6

93830-8

93829-0

93832-4

Sleep, function

Deep sleep duration

Light sleep duration

REM sleep duration

Sleep duration

BODY_WAIST http://snomed.info/sct

http://loinc.org/

248365001

narrower

8280-0

Circumference measure

narrower

Waist Circumference at umbilicus by Tape measure

BMI http://snomed.info/sct

http://loinc.org/

60621009

is equivalent to

39156-5

Body mass index

is equivalent to

Body mass index (BMI) [Ratio]

BODY_FAT http://snomed.info/sct

http://loinc.org/

366319001

is related to

73708-0

Body fat observable

is related to

Body fat [Mass] Calculated

BODY_MUSCLE http://snomed.info/sct 256668009 Muscle material

BODY_WATER http://snomed.info/sct 32457005 Body fluid

SMOKING http://loinc.org/ 63629-0 On the number of days you reported you smoked cigarettes during the past
30 days, how many cigarettes did you smoke per day, on average [PhenX]

STRESS http://snomed.info/sct 713137006 Stress

OXYGEN_SATURATION http://loinc.org/ 59408-5 Oxygen saturation in Arterial blood by Pulse oximetry

RESPIRATORY_RATE http://loinc.org/ 9279-1 Respiratory rate

BODY_TEMPERATURE http://loinc.org/ 8310-5 Body temperature

http://snomed.info/sct
http://snomed.info/sct
http://snomed.info/sct
http://snomed.info/sct

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 143

LIVING_ENVIRONMENT http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

liv-environment Living Environment Observations

ROOM_TEMPERATURE http://loinc.org/ 60832-3 Room temperature

HUMIDITIY http://loinc.org/ 65643-9 Relative humidity

PRB http://loinc.org/ 76268-2 Pressure.ambient Room

TCI http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

tci Thermal Comfort Index

EIAQI http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

eiaqi Environment Indoor Air Quality Index

IAQI http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

iaqi Indoor Air Quality Index

COVID_19_RISK http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

covid19_risk Covid 19 Risk Index

CARBON_DIOXIDE http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

co2-conc Carbon Dioxide concentration (ppm)

CARBON_MONOXIDE http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

co-conc Carbon Monoxide concentration (ppm)

VOLATILE_ORGANIC_COMPOUNDS http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

voc-conc Volatile Organic Compounds concentration (ppm)

PM_1 http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

pm1-conc PM 1 particle mass concentration

PM_2_5 http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

pm2.5-conc PM 2.5 particle mass concentration

PM_4 http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

pm4-conc PM 4 particle mass concentration

PM_10 http://hl7.eu/fhir/ig/gk/CodeSystem/ga
tekeeper

pm10-conc PM 10 particle mass concentration

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 144

A.2.2.2 OBSERVATION-CATEGORY

NAME System Code Display

VITAL_SIGN http://terminology.hl7.org/CodeSystem/
observation-category

vital-signs Vital Sign

SOCIAL_HISTORY http://terminology.hl7.org/CodeSystem/
observation-category

social-history Social History

SURVEY http://terminology.hl7.org/CodeSystem/
observation-category

survey Survey

ACTIVITY http://terminology.hl7.org/CodeSystem/
observation-category

activity activity

A.2.2.3 ENCOUNTER-CLASS

NAME System Code Display

INPATIENT_ENCOUNTER http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

IMP inpatient encounter

AMBULATORY http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

AMB ambulatory

PC_PREMISES http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

PC_PREMISES pc premises

PC_EMERGENCY http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

PC_EMERGENCY pc emergency

EMERGENCY http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

EMER emergency

VIRTUAL http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

VR virtual

HOME_HEALTH http://terminology.hl7.org/ValueSet/v3-
ActEncounterCode

HH home health

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 145

A.2.2.4 ENCOUNTER-HOSPITALIZATION

NAME System Code Display

HOME http://hl7.eu/fhir/ig/gk/CodeSystem/ad
mit-destination

home Home

NURSING_HOME http://hl7.eu/fhir/ig/gk/CodeSystem/ad
mit-destination

nursing-home Nursing home

OTHER http://hl7.eu/fhir/ig/gk/CodeSystem/ad
mit-destination

other Other

DEATH https://www.gatekeeper-
project.eu/fhir/CodeSystem/admit-
destination

death Death

MISSING_ANSWER https://www.gatekeeper-
project.eu/fhir/CodeSystem/admit-
destination

missing-answer Missing answer

A.2.2.5 ENCOUNTER-PARTICIPANT-TYPE
NAME System Code Display

GP http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

gp Gp

NURSE http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

nurse Nurse

HCP_SPECIALIST http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

hcp-specialist Hcp specialist

EMERGENCY_PROFESSIONAL http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

emergency-professional Emergency professional

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 146

SOCIAL_WORKER http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

social-worker Social worker

OTHER_SOCIAL_PROFILE http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

other-social-profile Other social profile

JOINT_INTERVENTION http://terminology.hl7.org/CodeSystem/
v3-ParticipationType

joint-intervention Joint intervention

A.2.2.6 ENCOUNTER-TYPE

NAME System Code Display

PLANNED http://terminology.hl7.org/CodeSystem/
encounter-type

planned Planned

UNPLANNED http://terminology.hl7.org/CodeSystem/
encounter-type

unplanned Unplanned

A.2.2.7 CONDITION-CODE

NAME System Code Display

STEATOSIS_LIVER http://snomed.info/sct 197321007 Steatosis of liver

HIGH_BLOOD_PRESSURE http://snomed.info/sct 38341003 High blood pressure

HEART_FAILURE http://snomed.info/sct 84114007 Heart failure

CHRONIC_OBSTRUCTIVE_LUNG http://snomed.info/sct 13645005 Chronic obstructive lung disease

CHRONIC_KIDNEY_DISEASE http://snomed.info/sct 709044004 Chronic kidney disease

ISCHEMIC_HEART_DISEASE http://snomed.info/sct 414545008 Ischemic heart disease (disorder)

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 147

HYPERCHOLESTEROLEMIA http://hl7.org/fhir/sid/icd-10 E78.0 Pure hypercholesterolemia

HYPOTHYROIDISM http://hl7.org/fhir/sid/icd-10 E03 Hypothyroidism

OTHER_CHROMIC_OBSTRUCTIVE_P
ULMONARY_DISEASE

http://hl7.org/fhir/sid/icd-10 J44 Other chronic obstructive pulmonary disease

TYPE_2_DIABETES_MELLITUS http://hl7.org/fhir/sid/icd-10 E11 Type 2 diabetes mellitus

A.2.2.8 CONDITION-CATEGORY

NAME System Code Display

SYMPTOM http://terminology.hl7.org/CodeSystem/
condition-category

symptom Symptom

COMORBIDITY http://terminology.hl7.org/CodeSystem/
condition-category

comorbidity Comorbidity

PRIMARY_DISEASE http://terminology.hl7.org/CodeSystem/
condition-category

primary-disease Primary disease

A.2.2.9 CONDITION-STATUS

NAME System Code Display

ACTIVE http://terminology.hl7.org/CodeSystem/
condition-clinical

active Active

INACTIVE http://terminology.hl7.org/CodeSystem/
condition-clinical

inactive Inactive

A.2.2.10 UCUM

NAME System Unit Code

D4.12 - Data Federation and Integration and Health Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 148

KG http://unitsofmeasure.org kilogram kg

MILLIMOLE_PER_MOLE http://unitsofmeasure.org millimole per mole mmol/mol

MILLIGRAM_PER_DECILITER http://unitsofmeasure.org milligram per deciliter mg/dL

ENZYME_UNIT_PER_LITER http://unitsofmeasure.org enzyme unit per liter U/L

INTERNATIONAL_UNIT_PER_LITER http://unitsofmeasure.org international unit per liter [IU]/L

ML_MIN_173_M2 http://unitsofmeasure.org mL/min/{1.73_m2} mL/min/{1.73_m2}

MILLIMETER_OF_MERCURY http://unitsofmeasure.org millimeter of mercury mm[Hg]

METER http://unitsofmeasure.org meter m

YEARS http://unitsofmeasure.org years y

HEART_RATE http://unitsofmeasure.org bpm {Beats}/min

MINUTES http://unitsofmeasure.org min minute

CENTIMETER http://unitsofmeasure.org cm centimeter

PERCENT http://unitsofmeasure.org % percent

A.3 FHIR-GK-EXTENSIONS (GK-EXT) [NEW]

Attribute name FHIR resource URL DataType Description of the extension

patientAge Observation http://hl7.org/fhir/StructureDefinition/observation-patientAge Integer Age of the patient when the
observation is performed

registeredDate Encounter http://hl7.org/fhir/StructureDefinition/encounter-
registeredDate

DateTime Date when the encounter is
registered (loaded) on the system

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 149

Instructions to add a new conversion in the Data Federation

A.4 General description of Data Federation.

Data Federation is a platform consisting of 3 main components:

• GK-integration engine: it is able to accepts data coming from
heterogeneous data source, convert them into Bundle FHIR and invoke the
GK-FHIR Server APIs to store transformed data.

• GK-FHIR Server: FHIR Server providing API according the FHIR standard
version R4

• GK-RDF Watcher: the component that executes the RDF conversion and sends
the converted data to the RDF server.

• GK-RDFJ4-WORKBENCH: Repository containing persisted FHIR data in rdf
format. It provides a set of API to retrieve information.

A.5 GK-integration engine
GK-Integration engine is a Maven Java project developed with Spring boot. It
provides mainly two kinds of Rest APIs, as shown in the following figure, that
accept raw data sent from heterogeneous data sources, convert them into GK-
FHIR compliant format and persist such data into the FHIR Server for the storage.
In the figure below a screenshot of the API documentation provided via Swagger.

Figure 78 OpenAPI Data Federation Integration Engine

In order to convert the sent data, the integration engine, internally, retrieves the
specific converter associated to the specific “data source”. The “data source”

https://www.hl7.org/fhir/operationslist.html
https://rdf4j.org/documentation/programming/repository/#access-over-http

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 150

identifier corresponds to the {pilot} path parameter for the EHR interface while it is
a combination of {pilot} and {sensorID} path parameters for the IOT interface.

A.5.1 How to build a new converter
If it is needed to provide a new converter for a new data source (it doesn’t matter
if such data source is going to call EHR or IOT interface), it is needed to implement
a new converter following Data Federation framework guidelines. In order to
speed up the process a sample eclipse project, with all the needed dependencies
already in place, is provided [1]. Once downloaded and imported in eclipse it is
simply needed:

Step 1: to provide the java data model used to deserialize data sent by the remote
data source.

Step 2: to provide the converter which will include the logic for transforming the
deserialized data (see step 1) in GK-FHIR compliant format.

Step 3: preform a test to check the capability of the new converter to properly
work

Here below the details of the two steps.

A.5.2 Step 1 details
Browse the sample project and go to:

it.eng.gk.dataintegration.model.<pilot name>

or to

it.eng.gk.dataintegration.model.<sensor ID>

respectively if the data source we want to federate is an EHR or an IoT sensor (or
IoT sensor gateway). The sample project already contains such packages based
on our knowledge of the project but they could be easily extended in the case. For
instance if the data source to federate is the Samsung IoT gateway android app,
then it is needed to access to:

it.eng.gk.dataintegration.model.samsung

and modify the class (DataModel.java) by overriding the method getFilledInstance
that is appointed to return an instance of the model, valorized with the data
received in the request body. If the DataModel.java depends on further classes
they can also be added in the same package. The important thing is that they
include getter and setter methods as for JAVA BEAN specification . Here below two
examples. On the left side an implementation in the case the string sent with the
body request is itself a FHIR bundle. On the right instead an example when the
body is a generic model in XML.

https://www.geeksforgeeks.org/javabean-class-java/

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 151

A.5.3 Step 2 details
Once the model has been completed it is possible to develop the converter that
is appointed to implement the transformation from the defined JAVA model (see
step 1) to BUNDLE FHIR of type TRANSACTION. Browse the sample project and
go to:

it.eng.gk.dataintegration.converters.<pilot name>

or to

it.eng.gk.dataintegration.converters.<pilot name>_<source ID>

respectively if the data source we want to federate is an EHR or an IoT sensor (or
IoT sensor gateway). The sample project already contains such packages based
on our knowledge of the project but they could be easily extended in the case. For
instance if the data source to federate is the Samsung IoT gateway android app,
then it is needed to move to:

it.eng.gk.dataintegration.converters.saxony_samsung

and modify the class (ConverterImpl.java) by:
1. Filling the constructor by initializing the attributes (semanticModel and

outputFormat). This information (and related getter(s) methods) are
exploited by the engine for routing purposes. Here below an excerpt:

2. Overriding the method convertFromHttpBody that is appointed to perform

the data format transformation. Here below an excerpt:

https://www.hl7.org/fhir/bundle.html

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 152

A.5.4 Step 3 details
Go to the folder: src/test/java and in the package it.eng.gk.dataintegration. Here you
find a test class (IntegrationEngineTests.java) containing three sections:

- The method you can override:

The compliance must me checked by analyzing the produced FHIR bundle.

- A concrete running example

- an utility method to load the input file you have uploaded in the local folder
(src/test/resources/test_files/).

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 153

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 154

A.6 ENVIRA JSON
Received message

Figure 79 ENVIRA JSON message

D4.4.2 - Data Federation and Integration and Health

Semantic Data Lake

Version 1.0 I 2022-02-14 I GATEKEEPER © 155

Converted information

Figure 80 ENVIRA Device FHIR conversion

Figure 81 ENVIRA Observation FHIR conversion

