

D3.3 Interoperability within Gatekeeper

Deliverable No. D3.3 Due Date 31/03/2020

Description Interoperability within Gatekeeper

Type Report/
Dissemination
Level PU

Work Package
No. WP3 Work Package

Title
Gatekeeper Web of Things
(WOT) Reference Architecture

Version 1.0 Status Final

 Uijt qspkfdu ibt sfdfjwfe gvoejoh gspn uif Gvspqfbo VojpoǮt Jpsj{po 4242 research and innovation programme under grant agreement Nº 857223

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 3

Authors

Name and surname Partner name e-mail

Francois Daoust W3C fd@w3.org

Dave Raggett W3C dsr@w3.org

Gabriel Galeote UPM ggaleote@lst.tfo.upm.es

Valentina Di Giacomo ENG valentina.digiacomo@eng.it

Domenico Martino ENG domenico.martino@eng.it

Thanos Stavropoulos CERTH athstavr@iti.gr

Ioannis Kompatsiaris CERTH ikom@iti.gr

Eleftheria
Polychronidou

CERTH epolyc@iti.gr

Konstantinos Votis CERTH kvotis@iti.gr

History

Date Version Change

02/03/2020 0.1 Initial draft

04/03/2020 0.2 Expanded prior to request for contributions

12/03/2020 0.4 Interoperability for Gatekeeper & restructuring

16/03/2020 0.5 Appendix on graph databases

17/03/2020 0.6 Architectural Patterns and DMCoach

18/03/2020 0.7 Expanded thing lifecycle

19/03/2020 0.8 Revised Architectural Patterns and DMCoach

23/03/2020 0.9 Incorporating feedback from S4C

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 4

26/03/2020 0.9.1 Incorporating feedback from STM

26/03/2020 0.9.2 Major restructuring following telecon

30/03/2020 0.9.3 Moved up section of web of things

14/04/2020 0.9.4 With further feedback from STM and SC

20/04/2020 1.0 Deliverable ready for submission

Key data
Keywords interoperability, graph data, abstraction layers

Lead Editor Dave Raggett

Internal Reviewer(s) Giuseppe Fico (UPM), Armand Castillejo (STM) and Daniel
Rodriguez (S4C)

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 5

Abstract
This deliverable explores the interoperability challenges facing the Gatekeeper pilots in
respect to integrating heterogeneous devices, information sources, protocols, data formats
and data models. The aim is to maximise interoperability through the use of existing and
emerging standards, and best practices, across the various services and devices used by
each pilot. What are the minimum interoperability mechanisms (MIMs), considering the
solutions available from the Gatekeeper technology partners? What ar e the interoperability
implications for different choices of architecture (edge, centralised and federated)?

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has
been made through appropriate citation, quotation or both.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 6

Table of contents

1 Introduction .. 10

2 Relationship to other Gatekeeper deliverables .. 12

3 Monitoring Elderly and Frail Patients .. 13

3.1 Framing the challenges ... 13

3.2 Web of Things ... 14

3.3 Web of Things and Open API .. 16

4 Technologies for Gatekeeper Pilots .. 18

4.1 Mobile apps... 18

4.2 Chatbots ...19

4.3 User Questionnaires ...19

4.4 Professional Websites ... 20

4.5 Wearables and other Medical Devices .. 20

4.6 External Medical Records .. 21

4.7 Miscellaneous .. 21

4.8 Sensors and Actuators ... 21

4.9 Data Collection .. 22

4.10 Application Execution Environments .. 23

5 Gatekeeper Architectural Patterns .. 24

5.1 Cloud-based architecture ... 24

5.2 Edge-based architecture .. 24

5.3 Federated architecture ... 25

5.4 Gatekeeper Platform .. 25

6 Interoperability Layers .. 28

7 Technical Interoperability in Gatekeeper .. 30

7.1 The Extensible Markup Language (XML) .. 30

7.2 JSON .. 31

7.3 JSON-LD ... 32

7.3 Chunks .. 33

8 Syntactic Interoperability in Gatekeeper .. 34

8.1 REST interface .. 34
8.1.1 Stateless and security .. 36

9 Semantic Interoperability in Gatekeeper .. 39

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 7

9.1 RDF and Linked Data .. 39

9.2 Labelled Property Graphs (LPG) .. 39

9.3 Chunks and Cognitive AI .. 40

9.4 SAREF Ontologies ... 40

9.5 Ontologies in Healthcare ... 40

10 Organisational Interoperability .. 42

11 Additional Considerations .. 45

11.1 Auditability and Provenance ... 45

11.2 Pull-based privacy business models ... 45

11.3 A Systems Perspective for Gatekeeper ... 46

12 Conclusions .. 48

Appendix A Gatekeeper technologies .. 49

A.1 HL7 .. 49

A.2 Mysphera ... 49

A.3 Samsung ... 51

A.5 BioAssist ... 52

A.6 Biobeat .. 53

C09 Ofejtbouí .. 53

A.8 UPM ... 54

A.9 Sense4Care .. 54

A.10 University of Ioannina .. 56

A.11 Tecnalia ... 56

A.12 Engineering .. 56

A.13 CERTH .. 58

Appendix B Graph Databases ... 61

B.1 Cognitive Databases ... 61

B.2 Chunks ... 61

B.3 Chunk API .. 63

Appendix C Glossary of Terms ... 67

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 8

Table of tables
Table 1 - technologies for reference use cases ... 18

Table 2 - Data types (Technical Interoperability) .. 57

Table 3 - Cloud Gateways (Syntactic Interoperability) ... 57

Table 4 - Data Repository (Semantic Interoperability) .. 58

Table 5 - Data Repository (Semantic Interoperability) .. 58

Table 6 - Data types (Technical Interoperability) .. 59

Table 7 - Cloud Gateways (Syntactic Interoperability) ... 59

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 9

Table of figures
Figure 1 - examples of alert devices ... 21

Figure 2 - Ingesting data .. 26

Figure 3 - Interoperability and the Gatekeeper Platform architecture .. 28

Figure 4 - HTTPS capabilities .. 36

Figure 5 - A stateless service infrastructure .. 37

Figure 6 - JSON Web Token authentication for a stateless service .. 38

Figure 7 - The Marketplaces relation to other Gatekeeper components ... 42

Figure 8 - Gatekeeper will use Hyperledger Fabric for security logs .. 44

Figure 9 - Contentment reporting ... 46

Figure 10 - Medical dashboard .. 48

Figure 11 - Biobeat sensor and monitor .. 53

Figure 12 ǫ STAT-ON sensor by Sense4Care ... 55

Figure 12 ǫ STAT-ON sensor by Sense4Care ... 56

Figure 12 - Hyperledger Fabric ... 60

Figure 13 - Cognitive architecture .. 63

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 10

1 Introduction
European citizens are living longer, and elderly and frail people will be living with various
chronic ailments, physical disabilities and mental incapacities that require long term medical
attention and care. In many cases, people would prefer to remain in the familiar environment
of their own homes if this is practical. This motivates work on smar t home healthcare
technologies that support well -being at home.

New medical devices and the discovery of bio -markers are enabling improved therapies,
based upon the means to collect and analyse wider sources of information to empower
patients and caregiver s, and provide accurate and objective information to healthcare
professionals. Gatekeeper seeks to explore the possibilities via a series of pilots and the
development of an open source platform.

This report on interoperability within Gatekeeper reviews th e requirements for the
Gatekeeper pilots to the extent they are known at the time of writing this report, and matches
them to the solutions that the technology partners are able to contribute, along with the
requirements for interoperability. The analysis leads to the proposal for defining a uniform
framework for storing and manipulating information, decoupling application services from
the complexity of the heterogeneous information sources, data formats and protocols.

The proposed Gatekeeper platform woul d integrate a graph database, statistics, rule engine
and graph algorithms. HTTP would be used for uploading data to the platform from sensors,
for access to electronic health records, and for the means to provide Web based tools for
patients, caregivers a nd clinical staff, inspired by the Star Trek medical dashboard, though
that itself is not the solution. We will seek to provide equally compelling ways to present the
qbujfouǮt qiztjdbm boe nfoubm ifbmui boe ipx ju jt dibohjoh pwfs ujnf. bt bo fggfdujwf upol to
support modern best practices for home healthcare.

Interoperability can be defined as the ability of computer systems and software to effectively
exchange and make use of information. Interoperability is a key concern for the Gatekeeper
project given the complex requirements for each of the pilots in terms of consumer and
medical devices, different kinds of networking technologies, and different kinds of software
needed, e.g. in smartphones, home hubs and cloud -based systems.

Interoperability can be c onsidered at multiple layers of abstraction 1. These are listed in order,
such that each layer depends on the next lower layer:

1. Organisational interoperability : e.g. terms and conditions for using a service
2. Semantic interoperability : vocabularies 2 for shared meaning, including units of

measure
3. Syntactic interoperability : data formats such as XML and JSON, and APIs
4. Technical interoperability : protocols such as Bluetooth, HTTP and Web Sockets

There are additional lower layers that are not shown here as they wo oǮu cf dpotjefsfe jo uijt
report, since they are subsumed by the choice of communication technologies.

1 See: Winters, Leslie & Gorman, Michael & Tolk, Andreas. (2006). Next Generation Data Interoperability: It's all About the
Metadata.

2 Vocabularies are used to define concepts and relationships, see:
https://www.w3.org/standards/semanticweb/ontology

https://www.w3.org/standards/semanticweb/ontology

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 11

Section 2 describes the relationship of this report to other Gatekeeper reports. Section 3
fybnjoft uif qspkfduǮt bjnt jo npsf efubjm boe jouspevdft uif Web of Things. Section 4 looks
at what is currently known about the technology require ments for the Gatekeeper pilots .
Section 5 discusses architectural patterns and their implications for privacy and security.
Section 6 discusses interoperability layers. Sections 7-10 delve into further details for each
layer. Section 11 discusses additional considerations. Section 12 lists the conclusions. The
appendices list the solutions available from the technology partners, provide an introduction
to cognitive databa ses, and finish with a glossary of terms.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 12

2 Relationship to other Gatekeeper deliverables
Uijt sfqpsu *F505+ xjmm cf gpmmpxfe cz efmjwfsbcmf F506 ǰ%fnboujd Opefmt. Wpdbcvmbsjft boe
TfhjtuszǱ jo uxp npouitǮ ujnf. boe F504 ǰQwfsbmm Ibuflffqfs bsdijufduvsfǱ jo b gvsuifs uxp
npouit0 F507 ǰIbuflffqfs cjobsz HJKT pqujnjtbujpo gps KpUǱ xjmm gpmmpx jo tjy npouit0 Uif xpsl
on the design of the Gatekeeper architecture will use the interoperability requirements
defined in this deliverable to adopt the a ppropriate architectural patterns ensuring
interoperability at all levels. As such, this report seeks to inform work that feeds into those
reports.

Uijt sfqpsu sfmjft vqpo F803 ǰOfejdbm vtf dbtft tqfdjgjdbujpo boe jnqmfnfoubujpo hvjefǱ gps
the preliminary assessment of the requirements for each pilot, as well as a survey conducted
up jefoujgz uif tpmvujpot uibu uif Ibuflffqfs ufdiojdbm qbsuofst dbo qspwjef0 F804 ǰGbsmz
efufdujpo boe joufswfoujpot. pqfsbujpobm qmboojohǱ qspwjeft gvsuifs cbdlhspvoe0 Uijt sfqprt
dpnqmfnfout efmjwfsbcmf F:03 ǰQwfswjfx pg sfmfwbou tuboebset jo tnbsu mjwjoh fowjsponfout
boe hbq bobmztjtǱ0

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 13

3 Monitoring Elderly and Frail Patients
This section expands the ideas from the introduction, and explains why Gatekeeper needs to
focus on a uniform framework for data and metadata, rather than the Web of Things. The
following section looks at the technologies the Gatekeeper Pilots plan to use for the
reference use cases and how they can be integrated using a common approach.

3.1 Framing the ch allenges

The aim of Gatekeeper is to improve the care of elderly and frail patients through better
monitoring and support for the patients themselves, their caregivers and healthcare
professionals. This is relevant whether the patients are living in their own homes, living in care
homes with 24x7 nursing staff, or in hospital wards.

Gatekeeper further seeks to support different approaches to healthcare, e.g. state provided
healthcare or free market solutions such as in the USA which involve a complex ecosys tem
and payments for individual services. Countries like the UK use a mix of the two approaches
with General Practice health centres and hospitals funded by the state, whilst care homes
and home help must be paid for by the patients themselves out of their own savings.

It is also increasingly common for people approaching retirement themselves to have to look
after their elderly parents. This can be very demanding for patients with dementia, or for those
who fall out of bed in the early hours of the morni ng, requiring the immediate aid of their
caregivers. Can improvements in monitoring help to arrest or slow the decline of elderly and
frail patients, with consequent improvements in well -being for themselves and their
caregivers?

As will be shown in S ectio n 6, the Gatekeeper Pilots plan to use a wide variety of devices
including wearables such as wristbands, static devices such as pressure pads, weighing
scales, and sensors that detect when doors are opened and closed. These devices use a
variety of communi cation technologies, e.g. Bluetooth, WiFi and cellular modems. In addition ,
whilst some devices use open standards, others involve proprietary approaches.

This heterogeneity introduces complexity, and increases the costs and risks for developing
monitoring solutions that combine multiple sources of information and provide integrated
dashboards for use by healthcare professionals. The challenge is to mitigate this complexity
through an architecture that splits responsibilities so that monitoring services can be
developed easily, without having to be concerned about the range of protocols, data formats
and other technology details for the different devices and their vendors. Those details are
efmfhbufe up tqfdjbmjtu efwfmpqfst xip dbo dsfbuf boe tvqqpsu uif ǰdpoofdupstǱ uibu gffe
information into a uniform framework for use by monitoring services.

Gatekeeper further seeks to support a marketplace for services as a means to enable an
ecosystem with providers and consumers. The project proposal envisions market ǰtqbdftǱ
for consumers, healthcare and businesses, and presumes that this can be implemented in
ufsnt pg qspwjefst boe dpotvnfst pg ǰUijohtǱ0 Hvsuifs xpsl jt offefe up uvso uijt gspn bo
abstract concept into practical examples with sellers, customers, and services with clear
value propositions.

It is also clear even now that well defined business models are needed to support multiple
stakeholders: the Gatekeeper platform operator, the monitoring devices, their provision and
installation, and the services p rovided by caregivers and healthcare professionals.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 14

The project proposal was written on the assumption that monitoring services can be
dpowfojfoumz cvjmu bspvoe X5EǮt Xfc pg Uijoht0 Uijt jowpmwft uif vtf pg wjsuvbm pckfdut uibu
act as digital twins for sen sors. Moreover, the identifiers for these digital twins are used as
part of a knowledge graph that describes the kinds of things, their properties and
interrelationships. This will be explained in more details in the following subsection. These
things wil l form part of a uniform framework for data and metadata. Gatekeeper needs to
work with medical experts to adopt and in some cases create vocabularies of terms for a
knowledge graph that can be used by all of the reference use cases described in D6.1 and
D6.2.

What is now less clear is whether monitoring services should be built on top of software
interfaces for digital twins (i.e. object properties, actions and events), as assumed in the
project proposal, or whether it would make more sense for services to be built on top of APIs
for knowledge graphs. Such APIs would support traversal and manipulation of knowledge
graphs, condition -action rules, high performance graph algorithms and event driven
processes, including notifying caregivers and medical staff wh en alarm criteria are met. This
latter approach represents an evolution from the Web of Things to the Sentient Web as a
synthesis of the IoT, cognition and machine learning.

3.2 Web of Things

The Web of Things is an abstraction layer for digital twins that seeks to address the
fragmentation of the IoT to reduce the costs and risks for all stakeholders.

1. Virtual digital objects that stand for physical and abstract entities
ƺ Sensors, actuators, heterogeneous information services,

2. that are exposed to client applications as local software objects
ƺ 7ũřĢŶǈƵǆČîŶǆřŶǈĢưîČǈǆǱřǈŕǆǈŕĢǆƂăŠĢČǈƮƵǆƛưƂƛĢưǈřĢƵĕǆîČǈřƂŶƵǆîŶėǆĢǰĢŶǈƵ
ƺ 7ũřĢŶǈǆîƛƛũřČîǈřƂŶƵǆėƂŶƮǈǆƵĢĢǆƂưǆŶĢĢėǆǈƂǆėĢîũǆǱřǈŕǆ_ÆÆ¸ĕǆ5ũǗĢǈƂƂǈŕĕǆĢǈČƠ

ƴ those details are handled by the web of things client platform
3. and used as part of semantic descriptions

ƺ ÆŕĢǆŦřŶėǆƂĹǆƵĢŶƵƂưĕǆřǈƵǆƛŕǸƵřČîũǆũƂČîǈřƂŶĕǆǗŶřǈƵǆƂĹǆŲĢîƵǗưĢĕǆĮ
ƺ Object histories, e.g. EHR records or patient summaries with patient test results

W3C has been working on the Web of Things for several years and has recently published
qspqptfe Tfdpnnfoebujpot *X5EǮt ufsn gps jut tuboebset+ gps uijoh eftdsjqujpot vtjoh
JSON-LD, and on architectural considerations for the Web of Things. Supplementary notes
cover security considerations and a proposed scripting A PI.

ǒ Web of Things: Architecture
ǒ Web of Things: Thing Descriptions
ǒ Web of Things: Scripting API
ǒ Web of Things: Binding Templates
ǒ Web of Things: Security and Privacy Guidelines
ǒ Web of Things: Current Practices

The question that has still to be addressed is how the Web of Things can be applied to
npojupsjoh uif dpoejujpo pg fmefsmz boe gsbjm qbujfout bu ipnf0 NfuǮt dpotjefs tpnf fybnqmes:

The patient could be asked to measure his or her body weight at a given time of day. The
weighing machine 3 integrates a 3G modem and sends the measurement via the mobile

3 f0h0 uif Ofejtbouí Dpez dpnqptjujpo tdbmf

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-security/
http://w3c.github.io/wot/current-practices/wot-practices.html

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 15

network to a cloud gateway. The measurement is in kilograms, and is associated wi th a
timestamp and a unique device identifier that can be used to relate the measurement to the
given patient.

In principle, we could define a Thing with a URL that identifies the particular weighing
machine. An HTTP GET request on the URL would return the Thing Description as a JSON -
LD resource. The Thing has a numeric property for the weight. The unit of measure would be
indicated as metadata for the property. The communications metadata in the Thing
Description indicates that a GET request on a specified path can be used to request the most
recent measurement.

There might even be a way for clients to subscribe to Thing events that signal new
measurements, for instance, the client platform could register a callback URL. The server
exposing the Thing can th en deliver events via HTTP POST requests to that URL. This is
sometimes referred to as a Web postback API.

In this scenario, the client is the Gatekeeper cloud platform that would save the
measurements to a graph database for subsequent use by services tha t monitor the patient.
The use of a Thing Description is hidden from services which interface with the graph
database. It would thus make no difference to the services if measurements were pushed to
the Gatekeeper cloud via HTTP PUT/POST requests from a de vice gateway.

In another example, a battery operated device takes regular measurements and buffers them
for efficient bulk transfer. This allows the device to run in a very low power mode that enables
the battery to last for many months and possibly even l onger, perhaps even the entire
working lifetime of the device. A Thing Description for this might involve a Thing action to
retrieve the buffered measurements as a JSON array. However, as for the previous example,
it would be simpler for the device gateway to push the buffered measurements to the
Gatekeeper cloud.

Another example is where the patient or caregiver enters information into a form on a mobile
app or desktop web page. The form contents are submitted to an HTTP server and saved to
the Gatekeeper cloud graph database. There is no role in this for the Web of Things.

Now consider a sensor that streams data, e.g. an ECG, where the instantaneous value is not
of interest as clinical staff are instead interested in the waveform formed by the sequence o f
wbmvft. boe xibu uibu dbo ufmm uifn bcpvu uif qbujfouǮt ifbsu dpoejujpo. f0h0 uif qsftfodf pg
arrhythmia and diseased valves. An application could present a scrolling view of the
waveform, and might also apply pattern recognition to classify the waveform , and to raise
alarms when something that needs urgent attention is detected. Clinical staff may also want
to look at past data, e.g., from a previous episode.

This points to the need for a client API for live and historical data, including the means to
query for particular patterns and alarms. This is also the case for sensors whose data is
batched and uploaded to the cloud every now and then.

In principle, Gatelffqfs dpvme efgjof bo CRK jo ufsnt pg bo ǰbdujpoǱ uibu sfuvsot uif tqfdjgjfe
data, e.g. an array of objects whose properties are the sensor reading and the time it was
taken. For replaying old data, we could also define a streaming API where values are pa ssed
to a call -back function. Gatekeeper partner, ERCIM, has a web -based ECG demo, where the
call -back is used to update an array of values which is then rendered to an HTML canvas
element as a multi -channel scrolling display.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 16

The ECG machine4 streams data to a cloud server, which then can be accessed from a mobile
or desktop app. Ideally, the server would be the Gatekeeper cloud so that clinician can save
a snapshot for later use. WebSockets would be a natural choice for the streaming protocol
along with JSON for the message format. Once again, there is little benefit for using a Thing
Description, particularly as the current Thing Description specification lacks support for
buffered updates.

A final example is where a monitoring service wants to make use of external electronic health
records that are exposed via the HL7 FHIR standard. This defines a deeply hierarchical data
model expressed as XML, JSON or RDF/Turtle. Having used HTTPS to retrieve the data,
applications can then use the XML DOM or XPath to traverse it in the case of an XML resource,
or the object path in the case of a JSON resource.

Trying to model an HL7 FHIR resource as a Thing Description would only complicate matters.
A much better idea is to implement a driver that pulls the XML or JSON resource from the
FHIR endpoint, transforms it into a graph representation, and then saves it into the Gatekeeper
cloud graph database.

There is value in being able to map FHIR to RDF, and HL7 has already paved the way. For
example, if you hav e ǰ4;685-9Ǳ bt uif LOINC identifier for body weight, this is mapped to
ǰiuuq<11mpjod0psh1seg#4;685-9Ǳ0 Uijt jt bmtp uif dbtf gps JN9Ǯt pxo ufsnjopmphz. f0h0 up
combine a system value with a code value, e.g.
ǰiuuq<11ufrminology.hl7.org/CodeSystem/v2 -24251seg#OTǱ. xijmtu uif tvckfdu pg bo
pctfswbujpo jt bttpdjbufe xjui uif TFH VTK ǰhttp://hl7.org/fhir/Observation.subject Ǳ0 JN9 jt
now working on a standard for rep resenting the FHIR data model in terms of JSON -LD.

Having mapped an HL7 FHIR resource to an RDF graph, the Gatekeeper platform could then
expose this to application code via an API to traverse graphs, as well as an API to make
SPARQL queries, and to apply RDF shape constraints (e.g. expressed in SHACL).

3.3 Web of Things and Open API

Open API *gpsnfsmz lopxo bt ǰ%xbhhfsǱ+ jt b ufyu-based format for describing REST APIs. At
this point, we have y et to establish just how important Open API will be to Gatekeeper.
Ppofuifmftt. ju tffnt sfbtpobcmf up btl ipx Qqfo CRK tfswjdft dpvme cf fyqptfe bt ǰuijohtǱ
as a means to decouple client application code from having to deal directly with the REST
APIs.

The Web of Things is more general and describes things at three levels:

1. The kinds of things and their inter -relationships as needed to support semantic
interoperability.

2. The local object model exposed to client applications in terms of the data model for
the pckfduǮt qspqfsujft. bdujpot boe fwfout0

3. Protocol details for use by Web of Things client platforms to communicate with
servers that expose things. This enables the Web of Things to work with a variety of
ecosystems using different standards.

To expose Op en API services and Things you will need to:

ǒ Assign a URI for the Thing Description,
ǒ Transform the Open API description to the Web of Things communication metadata.

4 e.g. MediLynx PocketECG

https://loinc.org/
http://hl7.org/fhir/Observation.subject
https://swagger.io/docs/specification/about/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 17

ǒ Design and describe the object model by which the service will be exposed to client
applica tions.

ǒ Add other metadata as needed to enable semantic interoperability.

You further need to check that your Web of Things client library supports Open API. The
library would be responsible for mapping the object model exposed to client code to the
REST API exposed by the Open API service.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 18

4 Technologies for Gatekeeper Pilots
This section reviews the emerging technical requirements for the Gatekeeper pilots as
voefstuppe gspn uif xpsljoh wfstjpo pg F803 ǰOfejdbm vtf dbtft tqfdjgjdbujpo boe
jnqmfnfoubujpo hvjefǱ uibu xbt bwbjmbcmf xifo uijt sfqpsu xbt cfjoh xsjuufo0

The following table summarises the technologies that are cited by each of the seven
reference use cases described in D6.1:

Table 1 - Technologies for reference use cases

Technology RUC1 RUC2 RUC3 RUC4 RUC5 RUC6 RUC7

Mobile app

Chatbot

VtfsǮt xfctjuf xjui
questionnaires

RspgfttjpobmǮt xfctjuf

Wearables and other
medical devices

Home sensors and
robots

External medical
records

? ? ? ? ? ? ?

Miscellaneous. VR & AR

At the time of writing the requirements for the reference use cases in respect to external
medical records was unknown. This report therefore considers a range of plausible
possibilities and their interoperability mechanisms.

The following subsections provide further details about each of the technology groups.

4.1 Mobile apps

This covers applications that run on mobile phones and tablets, possibly in association with
consumer wearables such as smart watches. Mobile apps can be used as gateways for
ingesting data from monitoring devices, as well as for providing user interfaces for monitoring,
alarm notifications and enrolling/un -enrolling devices. Mobile apps can be divided into native
applications and Web applications that run within a web browser.

Pbujwf bqqmjdbujpot bsf fyfdvufe ejsfdumz cz uif efwjdfǮt pqfsbujoh tztufn0 Uif uxp nptu
qpqvmbs bsf< IpphmfǮt Coespje boe CqqmfǮt jQ%0 On Android applications are implemented
using the Java programming language, whilst on iOS, applications can be implemented in
either Objective -E ps CqqmfǮt %xjgu qsphsbnnjoh mbohvbhf0 Pbujwf bqqt bsf uzqjdbmmz
available from a centralised app store syste n. f0h0 Ipphmf Rmbz boe CqqmfǮt Cqq %upsf0

Mobile Web applications are implemented in HTML and JavaScript, using a wide variety of
application frameworks. To minimise privacy concerns, Web browsers offer a more

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 19

constrained set of APIs compared to device na tive applications. This could be an issue for
Gatekeeper pilots, but on the other hand, Web applications are easier to develop compared
to device native applications.

4.2 Chatbots

Chatbots offer the ability for users to interact with computer systems using constrained
natural language dialogues via text or speech. The growing popularity of smart speakers for
home use, such as Amazon Alexa and Google Home with well -established frameworks for
third -party developers, make them an attractive option for Gatekee per pilots. Chatbots can
also be integrated as part of native mobile apps or browser -based Web applications.

Chatbots can be written in regular programming languages, such as JavaScript, Python, and
Java, or using higher level frameworks, such as AIML or D ialogflow. One approach involves
qbuufso nbudijoh up fyusbdu uif vtfsǮt joufou boe boz bttpdjbufe qbsbnfufst. gps fybnqmf. jg
uif vtfs tbzt< ǰxibu jt uif xfbuifs sjhiu opxAǱ. uif joufou jt b sfrvftu gps uif dvssfou xfbuifs
bu uif vtfsǮt mpdbujpo0 Uijt joufnt can be passed on to an application that looks up the required
information and formulates a suitable response. Other intents may result in invoking specific
bdujpot. f0h0 up ejn uif sppnǮt mjhiut. ps up jodsfbtf uif wpmvnf pg b tnbsu tqfblfs0

Another app roach is to use a goal directed dialogue involving a sequence of questions to the
user that gathers the information needed to perform the desired task. This may involve
starting with an initial open -ended question to determine what the user wishes to talk about,
and to offer suggestions if the user gets stuck. For spoken dialogues, it may be necessary to
btl gps b dpogjsnbujpo xifo uif vtfsǮt tqplfo vuufsbodf dboǮu cf sfdphojtfe xjui b ijhi
certainty.

The development process involves work on the natural la nguage dialogues and work on
cbdlfoe tfswjdft0 Cnb{po Cmfyb. gps jotubodf. bmmpxt bqqmjdbujpot lopxo bt ǰtljmmtǱ up cf
written in JavaScript with the ASK software development kit for NodeJS, and to use HTTP to
access external services via REST APIs.

Chatbo ts may be developed using machine learning from a large corpus of training
examples, which makes for more natural dialogues. However, there are risks for applying
nbdijof mfbsojoh qptu efqmpznfou. bt Ojdsptpgu gpvoe xjui jut ǰUbzǱ dibucpu gps Uxjuufs.
whic h was designed to mimic the language patterns of its users, and had to be shut down
after mimicking racist and sexually -charged utterances by other Twitter users.

To support improvements, it may be necessary to ask users for permission to record
dialogues for analysis, e.g. to extend the vocabulary, language usage and response patterns.
This raises serious privacy concerns and requires very careful consideration as how to provide
appropriate safeguards. Special processing may help to anonymise logged dialo gues prior
to storage.

4.3 User Questionnaires

Native apps and Web apps can be used to collect information from users via form filling. This
also relates to information gathered from family members and informal caregivers. User
questionnaires define the questions to be asked, how they are ordered and g rouped, any
intervening instructional text and what the constraints are on the allowed answers.
Questionnaires can follow an interoperable protocol since they can be communicated using

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 20

the Resource Questionnaire - Content and the Questionnaire Response resource of
HL7/FHIR.

4.4 Professional Websites

For doctors, nurses and other caregivers, pilots should be able to provide websites designed
for access from desktop computers, laptops as well as mobile devices (smartphones and
tablets). The websites should be designed to be secure, easily usable and accessible to
people with disabilities. The usability needs to be tested with different users prior to launch.
Each pilot will need to identify what information is needed by healthcare professionals,
caregivers and patients.

4.5 Wearables and other Medical Devices

Medical grade devices are certified to provide clinically actionable data. There are four broad
classes ranging from low to high risk (Class I, Class IIa, Class IIb and Class III). The classification
of meejdbm efwjdft jt b ǭsjtl cbtfeǮ tztufn cbtfe po uif wvmofsbcjmjuz pg uif ivnbo cpez
taking account of the potential risks associated with the devices. For further background, see:

 Guidance document ǫ classification of medical devices (MEDDEV)

Consumer devices such as smartphones, wristbands and smart watches, can indicate that
there is something to explore further. Both kinds of devices can play a valuable role for ho me
healthcare.

Devices can be standalone, or connected wirelessly, e.g. via Bluetooth or WiFi, or using a
physical cable, e.g. via a USB connection.

Personal alarms and security systems are devices that can summon help if the user falls,
wanders off or has a problem at home, including intercom systems that allow family
members to see who is knocking at the door. Alarms can be triggered if:

¶ The user falls over or out of bed
¶ The user has a fit
¶ The user wanders off or gets lost
¶ The room is either too hot or to o cold

The following shows examples of commercially available devices that are worn around the
neck or wrist, and can summon help on falling or when the wearer presses the panic button.
These typically alert family members/caregivers and may allow for two -way voice
conversation. The devices vary considerably in their range. Those using Bluetooth are very
short range and are unlikely to work from a different room. Other devices may be designed
to work even when the wearer is outside in the garden.

http://ec.europa.eu/DocsRoom/documents/10337/attachments/1/translations

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 21

Figure 1 - Examples of alert devices

Other kinds of devices include monitors, data loggers and single -reading devices, such as a
weighing machine to monitor body weight. See section 5 for devices of interest to the
Gatekeeper pilots.

4.6 External Medical Records

Uijt jowpmwft bddftt up fyjtujoh tztufnt. fjuifs mpdbm up b dmjojd ps iptqjubm. ps sfnpuf0 JN9Ǯt
FHIR involves secure REST based APIs with XML or JSON as data formats. Recent work on
the HL7 FHIR International Patient Summary (IPS), facilitates access to a snapshot of health
data or electronic health record extract with key information such as conditions, medications,
allergies, recent operations, implantable devices, etc. in an interoperable forma t. The means
to store and analyse data over time is key to evaluating the evolution of a disease.

In principle, Gatekeeper could also make use of remote access to pharmacological
databases, e.g. to check for possible problems when users are prescribed mult iple drugs. The
ability to connect to external services such as drug to drug interaction databases and
information regarding safe medication use through web services can help advance patient
and citizen empowerment.

4.7 Miscellaneous

One pilot intends to e xplore the use of virtual reality and augmented reality. How will this be
interfaced to the software systems and services? How will it use health data of the user of
the technology? The answers to these questions are not yet known at the time of writing th is
report.

4.8 Sensors and Actuators

The pilots will use either consumer or medical grade devices, such as:

ǒ Motion sensors (accelerometers, gyro sensors)
ǒ Magnetic door/window sensors
ǒ Environmental sensors e.g. temperature and humidity
ǒ Blood pressure sensor s

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 22

ǒ Pulse oximeters (heart rate and oxygenation)
ǒ ECG sensors
ǒ Glucometers
ǒ GPS based geofencing
ǒ Electric power usage (e.g. TV)

For the most part this will be connected by Bluetooth, but other choices include Z -Wave,
WiFi, 3G/4G cellular networks, and USB cable s. As yet, the pilots foresee little need for
actuators, apart from smart home devices for controlling the temperature and lighting, as
well as smart speakers for voice control of radio, television etc.

The use of actuators for medical purposes has regulat ory implications for the design and
conduct of pilots, involving higher costs, longer audits and extra documentation
requirements.

4.9 Data Collection

Sensor data will mostly be collected via mobile apps on a smartphone or tablet. In some
cases, the sensor s will connect to a home hub/gateway, such as the Samsung SmartThings
Hub. In other cases, sensors will use cellular networks to connect to remote gateways.

Some data is collected at the time of measurement, e.g. when standing on weighing scales,
or when t aking a blood pressure reading. Some devices generate live streams of data, e.g. an
Electrocardiogram (ECG). Other devices may need to buffer data for periodic upload. This
may further involve pre -processing to reduce the amount of data that needs to be bu ffered
and transmitted, as well as to transform it into a more useful form.

An example is a solid -state accelerometer that generates large amounts of raw data. This is
processed locally to measure the number of steps walked in a day, whether the patient ha s
xbmlfe vq boe epxo tubjst. uif qbujfouǮt tmffqjoh qbuufsot. boe up dbmm gps ifmq bt b nbuufs pg
urgency if the patient has fallen and is unable to get up again. Fall detectors sense movement
followed by an abrupt st op.

Most portable devices such as a wristband or smart phone need to be regularly charged. This
jt mjlfmz up nfbo hbqt jo ebub dpmmfdujpo0 Ko beejujpo. Dmvfuppui epftoǮu hp gbs. ftqfdjbmmz jo
some buildings. A solution is for devices to buffer data until they are able to reconnect. We
uifsfgpsf dboǮu sfmz po b mjwf tusfbn pg ebub0

Sensors are but one source of data that an application may want to process. Additional
sources may need to be considered. For instance, most pilot scenarios require access to the
userǮt ifbmuidbsf jogpsnbujpo0 Uijt jogpsnbujpo nbz dpnf gspn nvmujqmf tpvsdft<

ǒ The patient himself via an application questionnaire and by keeping a diary
ǒ The caregiver via some application questionnaire
ǒ Medical records accessed remotely (medical history and test results)
ǒ Pharmacological databases
ǒ etc.

The need to combine data from different sources obviously creates interoperability
constraints on mechanisms to retrieve that data (APIs and formats), and on semantic
vocabularies, also known as ontologies, used to represent and make sense of the data to
support decision making. However, devices and information systems are likely to use
different data models and data formats. The solution is to use a common data format and
ontology that these different data models and data formats could be mapped to. That i s

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 23

easier said than done. Nonetheless, this is a critical part of exposing data from monitoring
devices as digital twins in an integrated dynamically updated knowledge graph.

Qoupmphjft vtfe jo uif Ibuflffqfs qspkfdu xjmm cf eftdsjcfe jo ǰF506 ǫ Semantic M odels,
Wpdbcvmbsjft (TfhjtuszǱ0 Qoupmphjft up cf dpotjefsfe uzqjdbmmz uiptf efgjofe cz uif X5E
(such as SOSA/SSN5), ETSI (SAREF), and those used by HL7 FHIR.

4.10 Application Execution Environments

The technology inventory conducted by Pila Sala further shows that the pilots will use a
combination of mobile apps, hubs and gateways, and cloud servers. In many cases
Gatekeeper partners have already developed mobile applications for Android and iOS,
exploiting the native APIs and programming languages. The Samsung SmartThings Hub
supports the Groovy programming language, but another possibility for hubs/gateways
would be to use NodeJS, e.g. on a Raspberry Pi.

Cloud servers can be used for analytics, machine learning, event detection and notification
and long -term storage. The technology inventory shows that most solutions provide REST
APIs for external access. The pilots will also need Web servers to support web applications
that can be accessed using smart phones, tablets or desktop computers.

In principle, mobile apps, hubs/gateways and cloud servers could all involve libraries for
fyqptjoh boe dpotvnjoh ǰuijohtǱ. efdpvqmjoh bqqmjdbujpo dpef gspn uif voefsmzjoh efubjmt
for the communication protocols and data formats.

Apple has for years prohibited mobile ap ps from downloading and running executable code
and interpreted code. For Apple phones and tablets, this means that either Gatekeeper
services need to be pre -built as part of the mobile app, or that the service needs to run in the
cloud with the mobile app acting as a gateway for forwarding data. For more details, see
section 3.3.2 of the Apple Developer Program License Agreement and App Store Review
Guideline 2.5.2.

This suggests that Gatekeeper pilots may wish to focus on the cloud as a basis for
dynamica lly installing and managing services, with native mobile apps used in a restricted
role as data gateways, and built - in user interfaces.

5 https://www.w3.org/TR/vocab-ssn/

https://www.w3.org/TR/vocab-ssn/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 24

5 Gatekeeper Architectural Patterns
A systems architecture provides a conceptual model that defines the structure, beh aviour
and other views of a system. This can include physical and logical components and their
interrelationships.

Interoperability requirements depend on the choice of reference architecture that the project
envisions and on the scenarios that pilots will explore. All cases allow for the storage and
bobmztjt pg ebub up usbdl dibohft jo uif qbujfouǮt dpoejujpo0

The reference architecture for the project was not settled when this document was written.
Ku xjmm cf eftdsjcfe jo ǰF504 ǫ Gatekeeper Web of Things *XQU+ Tfgfsfodf CsdijufduvsfǱ0 Up
discuss interoperability mechanisms, three main directions can be envisioned.

5.1 Cloud-based architecture

One approach is to use a cloud -first architecture. In this architecture, all data and all services
are hosted in the cloud, and sensors and actuators are duplicated as digital twins hosted on
servers under the control of the service provider.

The main benefit of this approach is that it allo ws service providers to retain complete control
over data and services. Service providers can design the service with a purely centralized
perspective, that is both easier to deploy and to maintain. For instance, it can implement data
retention policies th at suit the service, and instantiate more servers as needed to meet the
computational and network demand in real -time.

One drawback is that this approach exposes service providers to privacy and security risks.
With the cloud -first approach, service provid ers are responsible for the security of medical
and personal data held on their servers. Security breaches risk exposing user data that is
inherently personal and private given the health scenarios addressed by Gatekeeper. From a
technical perspective, thi s liability creates strong requirements on security mechanisms. It
also creates significant financial and reputational risks from a business perspective.

5.2 Edge-based architecture

A second possibility is to take a completely opposite approach and focus o n an edge -based
bsdijufduvsf0 Ko uijt npefm. vtfs ebub sfnbjot po uif vtfsǮt qsfnjtft bt gbs bt jt qsbdujdbm0
Applications that need to process that data also run close to the user as well, either locally or
on the edge.

The main benefit of this approach i s that it greatly reduces the surface of exposure for the
vtfstǮ qsjwbuf ebub. bt ju jt opu ifme jo uif dmpve0 C tfdvsjuz csfbdi po b qbsujdvmbs vtfsǮt tztufn
dbo pomz fyqptf uibu vtfsǮt ebub. sfevdjoh uif mjbcjmjuz gps tfswjdf qspwjefst0 Cmtp. vtfst sfnbjn
in control of their personal data, and can choose and control which services can access their
ebub0 Koufsftujohmz bt xfmm. tfswjdft dbo dpoujovf up svo mpdbmmz xifo uif vtfsǮt Koufsofu
connection is lost, unlike the cloud -first approach. Benefits could b e reduced consumption
budget due to the connectivity switch -off, quality of Service to patient even disconnected.

The main drawback is that the implementation of this model requires a decentralized
approach that may be tricky to implement, deploy and mai ntain. Service providers may not
have real-time direct control over the devices on which their applications run, and no longer

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 25

control data storage. This creates the need to agree on interfaces and representations for
data, and on the definition of runtime s for applications.

Local runtime may also not be suitable for running complex Artificial Intelligence (AI)
algorithms on data and are de facto not suitable to run analyses that span multiple end users.
A work around is to use federated learning algorithms in which models are downloaded from
the cloud, improved with local data, and uploaded back to the cloud, without the need to
transmit personal data to the cloud.

Another drawback is that the definition of the home network may not match that of a simple
Local Area Network (LAN). It may span various telecommunication mechanisms such as
Ethernet, Wi Fi, Bluetooth, 4G/5G, or Low -power Wide -Area Network (LPWAN), whose
interconnection may require going through the cloud. Some scenarios may be difficult to
achieve using a pure edge -based approach as a result. On the other hand, other use case
scenarios may take advantage on edge -computing insuring autonomous local operation.

5.3 Federated architecture

The third approach is a federated architecture, involving keepin g some information at the
network edge and other information on different cloud -based systems. Here the idea is to
minimise the amount of personal information held on any one server. An example is the
bqqspbdi ublfo cz Ibuflffqfs qbsuofs Ofejtbouí. jo xijdh they provide cloud -based access
to data collected from remote medical devices. Each reading is associated with an
anonymous identifier for the device it derives from. However, it is up to clients of the cloud
API to relate these readings to particular pa tients.

With such a federated approach, clients can access information from multiple sources on an
as needed basis, subject to certification, pre -agreed terms and conditions, and logged to an
auditable distributed ledger. The approach can also be used for federated learning across
edge systems and multiple cloud -based systems that each hold a limited set of data.

5.4 Gatekeeper Platform

The challenges relating to syntactic and technical interoperability can be delegated to the
ǰdpoofdupstǱ uibu gffe ebub jnto the Gatekeeper cloud platform. One example involves a
wearable step sensor that uses Bluetooth to talk to a native app on a mobile phone. That app
uifo vtft JUUR% up vqmpbe uif qbujfouǮt tufq dpvou. f0h0 po bo ipvsmz ps ebjmz cbtjt0

The Gatekeeper plat form should support a uniform means for uploading data using HTTPS.
For live streaming it would make sense to support Web Sockets. Data would be transferred
in a common format, e.g. Chunks (see appendix B), JSON or JSON -LD.

Another example involves a weigh joh tdbmf uibu vtft 5I npcjmf up usbotnju uif qbujfouǮt cpez
weight to a connector in the cloud. The connector then uses HTTPS to forward the reading
to Gatekeeper.

A further example is where data is pulled to the Gatekeeper platform via an HTTPS request
to an external source, e.g. an electronic health record accessed via HL7 FHIR. In this case
the ǱdpoofdupsǱ can be considered as an app hosted by Gatekeeper.

Connectors hide the details of how they obtained the data, and are responsible for
transforming dat a into the form expected by the Gatekeeper platform.

The following figure depicts the role of connectors for ingesting data from external sources:

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 26

Figure 2 - Ingesting data

Semantic Interoperability is guaranteed by the Gatekeeper data Integration components.
Those components collect data in different data formats and convert them to HL7 FHIR
ontologies (for health data) and to IoT ontologies (e.g. SAREF) for IoT sensors data so they can
be used by the analytics services in Gatekeeper, as well as by the Pilot Applications.

The Gatekeeper platform will be expected to provide a management API for installing
application services on behalf of the Pilots. The execution framework should ensure best
security practices, for exampl e, applications monitoring a given patient should be prevented
from acc essing data for other patients. At one level this can be implemented using access
control for operations on the database, however, that by itself is insufficient.

To limit damage where a cyber -attacker has compromised a particular instance of an
bqqmjdbujpo. bqqmjdbujpot tipvme cf fyfdvufe jo tfqbsbuf beesftt tqbdft. tp uibu uifz dboǮu
access physical memory used for another patient.

This security model can be implemented by executing each application instance in its own
operating system process, and relying on the operating system to segregate memory for
each process. Interprocess communication is then used to support the APIs exposed to the
applications.

Gatekeeper needs to provide an easy to use means for enrolling new devices and associating
them with a given patient. The following explores some ideas for how that could be done for
a wearable such as a wristband that uses Bluetooth to connect to a mobile phone:

1. Kotubmm uif Ibuflffqfs bqq po uif qbujfouǮt tnbsuqipof. bgufs gjoejoh ju po Ipphmf Rmbz
or the Apple App Store.

2. Register the phone with the Gatekeeper system for the given patient. This could
involve typing in the patient iden tifier or using the phone to scan a QRcode issued by
the health service on behalf of that patient. It is likely that some second factor will be
needed to ensure stronger security.

This could for instance take the form of an easy to enter alphanumeric one -time code
issued by the health service for that purpose. At this point Gatekeeper could set up
public key based authentication to allow the mobile app to securely authenticate itself
to the Gatekeeper system when needed.

3. The Gatekeeper mobile app can now b e paired with the wristband. This may involve
pressing a button on the wristband. The user will be given a clear visible confirmation
by the mobile app that this step has been successful.

4. Uif npcjmf bqq dbo opx jojujbmjtf b ǰdpoofdupsǱ gps uif xsjtucboe bod register it with
the Gatekeeper system for the given patient, along with the ontology to be used for
uif xsjtucboeǮt ebub0

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 27

5. The wristband periodically sends data to the mobile app, which forwards it to
Gatekeeper for ingestion into the graph database for that patient.

6. When it comes time to unenroll the wristband, this can be done using either the mobile
app or by using a web application that serves as a management interface for
caregivers and healthcare professionals.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 28

6 Interoperability Layers
We conside r interoperability at different layers of abstraction, where each layer depends on
the layer below: Organisational, Semantic, Syntactic and Technical. This section introduces
how each of these layers relate to Gatekeeper, and is followed by separate sectio ns that
provide more detail for each layer.

The following figure shows a high -level architecture schema for the Gatekeeper Platform,
highlighting the interoperability challenge that each subsystem must fulfil.

Figure 3 - Interoperability and the Gatekeeper Platform architecture

 Technical Interoperability

The guarantee of Interoperability at this level of abstraction is not a concern of the
platform itself, but it is taken care of by the technologies provided by pilots. One exception
is the work of Task T3.5 which will propose an HL7 FHIR binary optimization for IoT. (see
Appendix A).

Another perspective is that this is taken care of by gateway software, which could, for
example, run as a mobile app on a smartphone, or run as a cloud service. The gateway
ĹǗŶČǈřƂŶƵǆîƵǆîǆƫČƂŶŶĢČǈƂưƭǆǈŕîǈǆǗƵĢƵǆǱŕîǈĢǰĢưǆcƂÆǆǈĢČŕŶƂũƂŊřĢƵǆîưĢǆîƛƛưƂƛưřîǈĢǆǈƂǆČollect
data, and then forwards it to the Gatekeeper cloud platform using either HTTPS or, for
streaming data, WebSockets Secure.

 Syntactic Interoperability

The main component ensuring interoperability at this level is the Things Management
System. All data coming from the sensors will be collected by this component. The Web
of Things paradigm and its protocol bindings will ensure a homogeneous representation
of data at syntactic level.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 29

The Thing management system can access data directly provided from Gatew ays or
External Cloud repositories, or mediated by other Gatekeeper services provided by WP5
(e.g. Intelligent medical device Connectors, Dynamic Integration Services).

ŶƂǈŕĢưǆƛĢưƵƛĢČǈřǰĢǆřƵǆǈŕîǈǆƫČƂŶŶĢČǈƂưƵƭǆƝƵĢĢǆîăƂǰĢƞǆîưĢǆưĢƵƛƂŶƵřăũĢǆĹƂưǆǈưîŶƵĹƂưŲřŶŊǆėata
gathered from IoT devices into a uniform format such as JSON or Chunks for ingestion into
the Gatekeeper database, and subject to validation against an agreed ontology. This
assumes a strict access control mechanism that safeguards privacy. This involv es a
management system that deals with authentication and access control, along with the
means to register and unregister connectors.

 Semantic Interoperability

Semantic interoperability refers to the agreement between the supplier and consumer of
a service as to the meaning of data. For example, that a given value is a number denoting
uif qbujfouǮt cpez xfjhiu jo ljmphsbnt bt nfbtvsfe bu b tqfdjgjfe ebuf boe ujnf. boe po
a particular weighing machine. Traditionally, this kind of information was included a s part
of the system documentation, and as such was implicit in the design of the system.

More recently, the trend is to make this information explicit in the form of machine
interpretable metadata using an agreed vocabulary of terms and following a well -defined
ontology. Explicit metadata facilitates search and transformation when mapping data
between different ontologies, something that is important when you want to exploit
information from heterogeneous sources. Gatekeeper will host metadata on a graph
database that is subject to appropriate access control in order to safeguard privacy, e.g.
segregating data by patients.

ǒ Organizational Interoperability

Organizational Interoperability relates to the business agreements between suppliers and
consumers of se rvices. This covers privacy, security and other terms and conditions.
Gatekeeper pilots will involve hardware and software components from multiple entities,
e.g. certified medical grade devices, mobile applications, cloud platforms and database
vendors.

The Gatekeeper marketplace is intended to provide a forum for suppliers and consumers
of services relating to home healthcare, segmented into consumer and business
dataspaces. Further details are given in the chapter on organizational interoperability.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 30

7 Technical Interoperability in Gatekeeper
Technical interoperability covers the interoperable use of protocols such as Bluetooth and
HTTP. Whilst the protocols may have well defined standards, there is often latitude for using
them in different ways that ca n then result in a lack of interoperability.

If we adopt the Web of Things, the Thing Descriptions include communications metadata that
describe how a client platform interacts with a server platform when the latter exposes things
using a REST API. In principle, Gatekeeper could ingest data from external sources where
those sources expose Things. In addition, Gatekeeper itself could expose things for use by
client applications.

A simpler framework would be for Gatekeeper to expose a single HTTPS based API for
uploading data to the Gatekeeper platform using a standard data format (JSON or Chunks)
and agreed data models. The Pilots would be given a means to install services on the
Gatekeeper platform, where services can use scripting APIs exposed by the plat form to
access and manipulate data for each patient. In addition, and if appropriate, Gatekeeper could
expose network APIs for remote clients.

Technical interoperability is related to how to convert complex objects to sequences of bits,
i.e. the means to support data serialization across different systems and technologies.

Based on the standards that are foreseen to be part of Gatekeeper, such as FHIR and Web of
Things, the most important serialization formats are: XML, JSON and JSON -LD. An additional
formau jt ǰEivoltǱ. tff Cqqfoejy D0 Uijt jt b tjnqmf bnbmhbn pg TFH boe Rspqfsuz Isbqit
that should be easier to use by the average developer.

The FHIR specification allows data to be serialized as XML or JSON and soon JSON -LD, which
is also used for describing digital twins for the Web of Things.

All these formats are also agnostic of the under the hood technologies used for marshalling
and unmarshalling serialization of data, in contrast to other formats such POJO or JavaBeans
that are only for Java.

More deta ils on the standards for HL7 FHIR, XML, JSON and JSON-LD will be given in
deliverable D8.1. The following is provided as interim measure before D8.1 is released.

7.1 The Extensible Markup Language (XML)

The standard of Extensible Markup Language (XML) is a markup language. It was created as
a both, human -readable and machine -readable format for document encoding. The first
specification was given by The World Wide Web Consortium's (WWW) XML 1.0 Specification
in 19986 and was updated in 2010.7

As a markup language, it is a system for annotating a document in a way that is syntactically
distinguishable from the text. That means that this standard allows the communication in the
way that the information can be extracted from it while it is used in anot her format. The XML
is just a shell that wraps the data. Therefore, the purpose is to be used for store and transport
data between applications and users of a communication process across the internet. It

6 https://www.w3.org/TR/1998/REC -xml -19980210.html

7 https:// www.w3.org/TR/REC -xml/

https://www.w3.org/TR/1998/REC-xml-19980210.html
https://www.w3.org/TR/REC-xml/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 31

focuses on simplicity, generality, and usability ac ross the Internet, but it does not do anything
to the data that is carried.

To understand XML, it is needed to understand its structure:

¶ Character: An XML document is a string of characters.
¶ Processor and application: The processor analy ses the markup and passes

structured information to an application.
¶ Markup and content: The characters making up an XML document are divided into

markup and content, which may be distinguished by the applicati on of simple
syntactic rules.

¶ Tag: A tag is a markup construct that begins with < and ends with >.
¶ Element: An element is a logical document component that either begins with a

start -tag and ends with a matching end -tag or consists only of an empty -eleme nt
tag.

¶ Attribute: An attribute is a markup construct consisting of a name ǫvalue pair that
exists within a start -tag or empty -element tag.

¶ XML Declaration: XML documents may begin with an XML declaration that describes
some information about themselves.

It is important to highlight that the XML above does not do anything, it is just information
wrapped in tags. It became a recommendation of W3C since February 1998 due to the
numerous incompatible formats from many systems that was a time -consuming for web
developers because they had to program converters to use those formats. Since then, this
format is very extended and used along the community.

<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weeken d!</body>
</note>

7.2 JSON

The JavaScript Object Notation (JSON]) is an open standard file format, and data interchange
format, with the purpose of using a human -readable text to store and transmit data objects.
The objects consist of attribute ǫvalue pairs and array data types. It is a very used data format
that almost replaced XML due to high versatility and simplicity .8

The JSON format is agnostic about the semantics of numbers, that means that it does not
type of data (fixed or floating, binary or decima l). That can make interchange between
different programming languages difficult. JSON instead offers only the representation of
numbers that humans use: a sequence of digits. All programming languages know how to
make sense of digit sequences even if they disagree on internal representations.

An example of a JSON file is shown here:

8 See: https://tools.ietf.org/html/std90 ,
http://www.ecma -international.org/publications/files/ECMA -ST/ECMA -404.pdf and
https://www.iso.org/standard/71616 .html

https://tools.ietf.org/html/std90
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.iso.org/standard/71616.html

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 32

{
 "id": 1,
 "name": "Foo",
 "price": 123,
 "tags": [
 "Bar",
 "Eek"
],
 "stock": {
 "warehouse" : 300,
 "retail": 20
 }

}

7.3 JSON-LD

This format is a modification of JSON file format for linked data (JavaScript Object Notation
for Linked Data). It is a method of encoding Linked Data using JSON. It allows data to be
serialized similarly as JSON.

JSON-LD allows existing JSON to be interpre ted as Linked Data with minimal changes. It is
primarily intended to be a way to use Linked Data in Web -based programming environments,
to build interoperable Web services, and to store Linked Data in JSON -based storage
engines. Since JSON-LD is 100% compatible with JSON, there is a huge community that
supports this standard. Main features of JSON -LD are :

ǵ Universal identifier mechanism for JSON objects via the use of IRIs.

ǵ A tool for disambiguate keys shared among different JSON documents by mapping
them to IRIs via a context.

ǵ Mechanism in which a value in a JSON object may refer to a JSON object on a different
site on the Web.

ǵ Ability to annotate strings with their language.

ǵ A way to associate datatypes with values such as dates and times.

ǵ Facility to express one or more directed graphs, such as a social network, in a single
document.

{
 "@id": "http://store.example.com/products/links -swift -chain",
 "@type": "Product",
 "name": "Links Swift Chain",
 "description": "A fine chain with many links.",
 "category": [
 "http://store.example.com/categories/parts",
 http://store.example.com/categories/chains
],
 "price": "10.00",

http://store.example.com/categories/chains

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 33

 "stock": 10
}

7.3 Chunks

Chunks is a simple amalgam of RDF and Labelled Property Graphs that was inspired by work
by John Anderson on ACT -R (Adaptive Control of Thought ǬRational), a popular cognitive
science architecture.

ƫACT-R is a cognitive architecture: a theory for simulating and understanding human
cognition. Researchers working on ACT-R strive to understand how people organize
knowledge and produce intelligent behaviour. As the research continues, ACT -R evolves
ever closer into a system which can perform the full range of human cognitive tasks:
capturing in great detail the way we perceive, think about, and act on the world. ƭ

See: http://act -r.psy.cmu.edu/

Chunks makes it easy to express entities with multiple properties and labe lled direct ed
relationships to other entities. Chunks is further designed to support a blend of symbolic and
sub-symbolic (statistical) information, that facilitates reasoning and machine learning, as well
as the challenges posed by the uncertainty, incomp leteness and inconsistency often found
in the real world, and a major challenge for Data Science. As such Chunks enables Cognitive
AI, that is, the next generation of Artificial Intelligence inspired by hundreds of millions of years
of evolution and the me ans to give computing a human touch.

For more information see Appendix B and the W3C Cognitive AI Community Group .

http://act-r.psy.cmu.edu/
https://www.w3.org/community/cogai/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 34

8 Syntactic Interoperability in Gatekeeper
Syntactic interoperability covers the APIs and associated data formats and encodings, e.g.
the representation of numbers, and the character set and encoding for strings. Gatekeeper
needs to expose different kinds of APIs:

ǒ APIs for ingesting data into the Gatekeeper platform
ƺ For example, a REST API for uploading data

ǒ APIs for use by applications hosted by Gatekeeper
ƺ Scripting APIs for local (server -side) applications
ƺ TG%U CRKǮt gps sfnpuf *dmjfou-side) applications

ǒ APIs for management purposes, e.g. privacy, trust and security

To ensure robust operation, Gatekeeper should validate all data passed through these APIs.
In addition, to support good security practices, APIs usage should be subject to access
control and logging. We will need to integrate security agents that monitor the system and
are capable of spotting suspicious patterns of behaviour (including denial of service attacks),
alerting security staff, and taking remedial actions.

C gvsuifs hpbm xpvme cf up jodmvef tfdvsjuz ǰipofzqputǱ0 Uiftf bsf nfdibojtnt uibu bsf
designed to lur e attackers as a means to detect, analyse and block attacks. The mechanisms
can include known security vulnerabilities that attackers will seek out as a means to
compromise systems. We may want to provide a trap database that we can redirect attackers
to in place of the operational databases. Honeypots may be designed to fool attackers into
thinking that they have succeeded, meanwhile allowing system administrators to trace
attackers, and work with ISPs to cancel the attackers Internet accounts.

Some data s ecurity standards:

ǒ ISO 27001
ǒ ISO 27799
ǒ HIPAA
ǒ GDPR

Deliverable D8.1 will provide a detailed survey of standards and standardisation gaps.

8.1 REST interface

REpresentational State Transfer (REST) is an architectural style inspired by the Web. There
are many principles and constraints behind the REST style, they are really helpful when we
gbdf joufhsbujpo dibmmfohft jo b njdsptfswjdft xpsme. boe xifo xfǮsf mppljoh gps bo
alternative style to RPC for service interfaces.

In REST, most important is the concept o f resources. A resource could be seen as a thing that
the service itself knows about, like a Device. The server creates different representations of
this Device on request. How a resource is shown externally is completely decoupled from
how it is stored in ternally. A client might ask for a JSON representation of a Device, for
example, even if it is stored in a completely different format. Once a client has a
representation of this Device, it can then make requests to change it, and the server may or
may not comply with them.

TG%U jutfmg epftoǮu sfbmmz ubml bcpvu voefsmzjoh qspupdpmt. bmuipvhi ju jt vtfe pwfs
HTTP. Some of the features that HTTP gives part of the specification, such as verbs, make
implementing REST over HTTP easier, whereas with other protoc ols it needs to handle these

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 35

features from scratch. HTTP itself defines some useful capabilities that play very well with
the REST style. For example, the HTTP verbs (e.g., GET, POST, and PUT) already have well
understood meanings in the HTTP specification as to how they should work with resources.
The REST architectural style actually tells that methods should behave the same way on all
resources, and the HTTP specification happens to define a bunch of methods that can be
used. GET retrieves a resource in an idempotent way, and POST creates a new resource. This
means that it can be avoided lots of different create Device or edit Device methods. Instead,
we can simply POST a device representation to request that the server create a new resource,
and initiate a GET request to retrieve a representation of a resource. Conceptually, there is
one endpoint in the form of a Device resource in these cases, and the operations can carry
out upon it are baked into the HTTP protocol.

The use of standard textual formats g ives clients a lot of flexibility as to how they consume
resources, and REST over HTTP lets us use a variety of formats. The XML and JSON formats
are the much more popular content types for services that work over HTTP.

The fact that JSON is a much simpler format means that consumption is also easier. Some
proponents also cite its relative compactness when compared to XML as another winning
gbdups. bmuipvhi uijt jtoǮu pgufo b sfbm-world issue.

JSON does have some downsides, though. XML defines the link cont rol we used earlier as a
izqfsnfejb dpouspm0 Uif L%QP tuboebse epftoǮu efgjof bozuijoh tjnjmbs. tp jo-house styles
are frequently used to shoehorn this concept in. The Hypertext Application Language (HAL)
attempts to fix this by defining some common standa rds for hyperlinking for JSON (and XML
upp. bmuipvhi bshvbcmz YON offet mftt ifmq+0 Kg gpmmpxt uif JCN tuboebse. juǮt qpttjcmf up vtf
tools like the web -based HAL browser for exploring hypermedia formats and controls, which
can make the task of creating a client much easier.

In a hypermedia format, hypermedia controls represent protocol information. A hypermedia
control includes the address of a linked resource, together with some semantic markup. In
the context of the current resource representation, the s emantic markup indicates the
meaning of the linked resource.

The phrase hypermedia as the engine of application state 9, sometimes abbreviated to
HATEOAS, was coined to describe a core tenet of the REST architectural style. HATEOAS
means that hypermedia sys tems transform application state. An application as being
computerized behaviour that achieves a goal, it can be described by an application protocol
as the set of legal interactions necessary to realize that behaviour. An application state is a
snapshot o f an execution of such an application protocol. the protocol lays out the interaction
rules; application state is a snapshot of the entire system at a particular instant.

A hybrid RESTful is a class of web services that fit somewhere in between the RESTful web
services and the purely RPC -style services. These services are often created by
programmers who know a lot about real -world web applications, but not much about the
theory of REST. Anywhere there is a clear matching on the protocol messages in objects it is
well classified as RESTful service. An example of a hybrid RESTful 10 is the Flickr web service 11.
Fftqjuf uif ǰsftuǱ jo uif VTK. uijt xbt dmfbsmz eftjhofe bt bo TRE-style service, one that uses

9 REST in Practice Hypermedia and Systems Architecture, By Savas Parastatidis, Jim Webber, Ian Robinson,
Publisher: O'Reilly Media, Release Date: September 2010

10 RESTful Web Services, By Leonard Richardson, Sam Ruby, Publisher: O'Reilly Media, Release Date: December
2008

11 http://www.flickr.com/ services/rest?api_key=xxx&method=flickr.photos.search&tags=penguin

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 36

JUUR bt jut fowfmpqf gpsnbu0 KuǮt hpu uif tdpqjoh jogpsnbujpo *ǰqipupt ubhhfe ǭqfohvjoǮǱ+ jo
the URI, just like a RESTful resource -psjfoufe tfswjdf0 Dvu uif nfuipe jogpsnbujpo *ǰtfbsdi gps
qipuptǱ+ bmtp hpft jo uif VTK0 Ko b TG%Ugvm tfswjdf. uif nfuipe jogpsnbujpo xpvme hp joup uif
HTTP method (GET), and whateve r was leftover would become scoping information. As it is,
this service is simply using HTTP as an envelope format, sticking the method and scoping
information wherever it pleases.

This optical illusion happens when an RPC -style service uses plain old HTTP as its envelope
format, and when both the method and the scoping information happen to live in the URI
portion of the HTTP request. If the HTTP method is GET, and the point of the web service
sfrvftu jt up ǰhfuǱ jogpsnbujpo. juǮt ibse up ufmm xifuifs uif method information is in the HTTP
method or in the URI. Look at the HTTP requests that go across the wire and you see the
sfrvftut zpvǮe tff gps b TG%Ugvm xfc tfswjdf0 Uifz nbz dpoubjo fmfnfout mjlf
ǰnfuipe?gmjdls0qipupt0tfbsdiǱ cvu uibu dpvme cf joufsqsfued as scoping information, the way
ǰqipupt1Ǳ boe ǰtfbsdi1Ǳ bsf tdpqjoh jogpsnbujpo0 Uiftf TRE-style services have elements of
RESTful web services. Many read -only web services qualify as entirely RESTful and resource -
oriented, even though they were designe d in the RPC style. But if the service allows clients
up xsjuf up uif ebub tfu. uifsf xjmm cf ujnft xifo uif dmjfou vtft bo JUUR nfuipe uibu epftoǮu
match up with the true method information. This keeps the service from being as RESTful as
it could be. Ser vices like these are the ones I consider to be REST -RPC hybrids.

JfsfǮt pof fybnqmf0 Uif Hmjdls xfc CRK btlt dmjfout up vtf JUUR IGU fwfo xifo uifz xbou
to modify the data set. To delete a photo you make a GET request to a URI that includes
method=flickr.p ipupt0efmfuf0 UibuǮt kvtu opu xibu IGU jt gps0 Uif Hmjdls xfc CRK jt b TG%U-RPC
hybrid: RESTful when the client is retrieving data through GET, RPC -style when the client is
modifying the data set.

8.1.1 Stateless and security
Both RESTful and Hybrid RESTful service rely on HTTP. This means that they are missing a
security. In order to maintain the confidentiality and integrity of resource representations it is
quite recommended to use TLS and make resources accessible over a server configured to
serve requests only using HTTPS.

Figure 4 - HTTPS capabilities

HTTP is a layered protocol. It relies on a transport protocol such as TCP/IP to provide the
reliability of message transport. By layering HTTP over the TLS (RFC 5246) protocol (HTTPS),
which is a successor of SSL, you can maintain the confidentiality and i ntegrity of request and

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 37

response messages without dealing with encryption and digital signatures in client and server
code (Figure 1).

TLS can also be used for mutual authentication where both the server and the client can be
bttvsfe pg uif puifs qbsuzǮt jdentity. For instance, you can use basic authentication to
authenticate users but rely on TLS to authenticate the client and the server.

When you use TLS for confidentiality and integrity, you can avoid building protocols for such
security measures directl y into request and response messages. Moreover, TLS is message
agnostic. It can be used for any media type or request.

With HTTPS (HTTP over TLS) we are solving confidentiality and integrity but we are still
missing another fundamental aspect of security t hat is authentication.

When users or services interact with an application they will often perform a series of
interactions that form a session. A stateless application 12 is an application that needs no
knowledge of previous interactions and stores no sess ion information, it is usually based on
an architecture that doesn't need user data (see Figure 2). Such an example could be an
application that, given the same input, provides the same response to any end user. A
stateless application can scale horizontal ly since any request can be serviced by any of the
available compute resources (e.g., EC2 instances, Google cloud functions, AWS Lambda
functions).

Figure 5 - A stateless service infrastructure

12 Architecting for the Cloud AWS Best Practices February 2016,
https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf.

https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 38

With no session data to be shared, you can simply add more compute resources as needed.
When that capacity is no longer required, any individual resource can be safely terminated
(after running tasks have been drained). Those resources do not need to be aware of the
presence of their peers ǫ all that is required is a way to distribute the workload to them.

C tubufmftt tfswjdf jnqmjft b tubufmftt bvuifoujdbujpo0 Uijt nfbot. bu tfswfs tjef xf epoǮu
maintain the state of a user. The server is completely unaware of who sends the request as
xf epoǮu nbjoubjo uif tubuf0 Xf dbo bdijfwf uif tuateless authentication by using JWT (JSON
Web Token). Token based approach solves problem of traditional approach in which server
has to store Ids of Session and relevant data for each individual. One of the token based
approach is JSON-based Open Standard (RFC 7519)13 known as JWT (Figure 3).

Figure 6 - JSON Web Token authentication for a stateless service

13 https://tools.ietf.org/html/rfc7519, JSON-based Open Standard (RFC 7519]

https://tools.ietf.org/html/rfc7519

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 39

9 Semantic Interoperability in Gatekeeper
Semantic interoperability covers information about shared meaning, e.g. that a particular data
value refers to the temperature in Celsius for a given room, and at a given time. This can be
addressed through agreements on vocabularies of terms.

This section considers the role of semantic technologies in simplifying the technical
challenges for the Gatekeeper pilots in respect to i nteroperability in the face of
heterogeneous information sources, then gives an overview of the approach that Gatekeeper
expects to take..

When ingesting data into the Graph database, the Gatekeeper Validator should apply graph
shape constraints to ensure that the data conforms to the ontology for a given connector as
agreed when the connector was registered. The provenance of data would be recorded to track
which sensor/source it came from, and to relate it to models of trust and certification.

9.1 RDF and Linked Data

TFH jt X5EǮt gsbnfxpsl gps nfubebub0 X5E ibt bo fyufotjwf tvjuf pg bttpdjbufe tuboebset0
RDF is used to describe things in terms of graphs composed from vertices and labelled
directed edges. RDF focuses on individual edges <subject, label, obj ect> called triples.

RDF makes use of URIs for vertices and edge labels. These URIs act as global identifiers for
common concepts, and may be dereferenceable to obtain further metadata. RDF further
permits local identifiers called blank nodes that are scoped to a single graph. RDF -based
ontologies describe a domain in terms of the concepts and relationships used for that domain.
This can be applied to all kinds of things: patients, diseases, medications, treatments, test
results, behaviours, sensors, locations, events, etc.

RDF abstracts away from lower level data formats and APIs, forming a key to simplifying
integration across heterogen eous information sources. RDF supports reasoning based upon
formal semantics and logical deduction, or rule -based graph traversal.

Qoupmphjft vtfe jo uif Ibuflffqfs qspkfdu xjmm cf eftdsjcfe jo ǰF506 ǫ Semantic Models,
Wpdbcvmbsjft (TfhjtuszǱ0 Qoupmphjft to be considered are typically those defined by the W3C
(such as SOSA/SSN14), ETSI (SAREF), HL7 and terminology developers such as Regenstreif
(LOINC, UCUM) and SNOMED Int. (SNOMED CT).

9.2 Labelled Property Graphs (LPG)

LPG are similar to RDF in being composed from vertices and labelled directed edges. You
can further associate both vertices and edges with sets of properties (name/value pairs). LPG
can be transformed without loss into RDF, using edges for properties, and reification for
annotating edges. However, reification is a rather awkward aspect of RDF along with blank
nodes. On the flip side, LPG implementations lack interoperability across vendors with a
variety of different query languages and APIs.

14 https://www.w3.org/TR/vocab -ssn/

https://www.w3.org/TR/vocab-ssn/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 40

9.3 Chunks and Cognitive AI

Chunks is an amalgam of RDF and LPG, where each chunk has a type, an identifier, and set
of properties, whose values name other chunks to form graphs. In more detail, property
values can be Booleans (true or false), numbers, names, string literals (in double q uotes) or
lists there -of. Property names themselves can act as chunk identifiers.

Uif ufsn ǰdivolǱ jt cpsspxfe gspn Rtzdipmphz0 Eivolt bsf vtfe up fyqsftt efdmbsbujwf boe
procedural knowledge. Cognitive AI combines symbolic knowledge (chunks) with statisti cs,
rules and graph algorithms, inspired by advances in the cognitive sciences, that point the way
to giving computer systems a more human touch.

The combination of symbolic and statistical information is important for machine learning and
for many forms o f reasoning that rely on the statistics of prior knowledge and past experience,
for instance, abductive reasoning that seeks likely explanations for given observations, based
on knowledge of causal mechanisms, and their likelihood in a given context. Stati stics are
also important for inferring potential causal relationships in datasets, e.g. using covariance
analysis and more general approaches that can search across multiple overlapping datasets.

For more details see: https://www.w3.org/community/cogai/

9.4 SAREF Ontologies

ETSI started with the SAREF (Smart Applications REFerence ontology) specifications for
energy, environment and buildings, and have extended this with extensions for smart cities,
manufacturing, and smart agriculture and food chain domains. SAREF provides building
blocks that allow separation and recombination of different parts of the ontology according
to specific needs. The SAREF4CITY specification use cases include eHealth and smar t
parking, air quality monitoring, mobility and street lighting.

ǒ Smart Applications Reference Ontology and extensions

ETSI TC SmartM2M is working to include more activity sectors and to complete the
development of an open portal to gather direct contributions to SAREF by 2020. The
tublfipmefstǮ fwpmwjoh ebub npefm joqvut dbo uifo cf ejsfdumz sfgmfdufe jo uif GU%K %CTGH
and oneM2M specifications.

9.5 Ontologies in Healthcare

Gatekeeper needs to be aware of existing work on ontologies. Here are a few pointers:

ǒ LOINC (Logical Observation Identifier Names and Codes) defines a common
terminology for laborat ory and clinical observations, and seeks to replace the
idiosyncratic internal code values for identifiers as used by most laboratories and
clinical services.

ǒ HL7 FHIR defines a set of resources describing the socia l and health care domain,
utilising existing terminologies (e.g. SNOMED CT and LOINC).

ǒ Unified Medical Language System (UMLS) integrates and distributes key
terminology, classification and coding standards, and associated resources to

https://www.w3.org/community/cogai/
https://saref.etsi.org/
https://www.etsi.org/committee/1414-smartm2m
https://loinc.org/get-started/
https://hl7.org/FHIR/
https://www.nlm.nih.gov/research/umls/index.html

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 41

promote creation of more effective and interoperable biomedical information
systems and services, including electronic health records.

ǒ Open Clinic al lists some current work on medical ontologies
ǒ ITEMAS healthcare ontology developed by a network of 66 healthcare centres in

Spain.
ǒ W3C Semantic Sensor Network (SSN) ontology for describing sensors and their

observations, the involved procedures, the studied features of interest, the samples
used to do so, and the observed properties, a s well as actuators. SSN includes SOSA
as a lightweight self -contained ontology (based upon IoT-Lite) and defining
elementary classes and properties.

Gatekeeper wil l seek to re -use existing ontologies where practical.

http://www.openclinical.org/ontologies.html
https://health-policy-systems.biomedcentral.com/articles/10.1186/s12961-019-0453-y
https://www.w3.org/TR/vocab-ssn/
http://personal.ee.surrey.ac.uk/Personal/P.Barnaghi/doc/bare_conf_e1.pdf

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 42

10 Organisational Interoperability
Organisational interoperability covers agreements on privacy, security and more generally,
the terms and conditions agreed between the supplier and consumer of a service.

Gatekeeper is primarily about providing elderly and frail patients with improved care through the
ǗƵĢǆƂĹǆČƂŶƵǗŲĢưǆîŶėǆŲĢėřČîũǆŊưîėĢǆėĢǰřČĢƵǆǈƂǆŲƂŶřǈƂưǆǈŕĢǆƛîǈřĢŶǈƮƵǆČƂŶėřǈřƂŶǆîŶėǆĢŶîăũĢǆ
appropriate action by the patient, caregivers and healthcare professionals. In respect to the aims
for a Gatekeeper marketplace, Gatekeeper has yet to clarify who the sellers are, what they are
selling, the value proposition for the customers, and who those customers are!

It might be better to start by asking what i s the business model for providing the Gatekeeper
platform and associated mobile apps? For instance, are patients or healthcare providers
expected to pay a subscription fee according to need, e.g. the number of patients? Likewise, how
are the monitoring de vices monetized? Can they be purchased for a one-off fee, or is there a
subscription fee for their use? How does this vary across state provided healthcare such as the
ËrƮƵǆ _ÁĕǆîŶėǆĹưĢĢǆŲîưŦĢǈǆîƛƛưƂîČŕĢƵǆƵǗČŕǆîƵǆřŶǆǈŕĢǆËÁ Ʀ

GATEKEEPER Marketplace

The GATEKEEPER Marketplace is a hub for consortium Members and third parties to publish
and monetize WoT Services and for end -users to discover and consume them. The
Marketplace will facilitate transactions in all Gatekeeper spaces including healthcare (B2G),
con sumer (B2C) and business ecosystem transactions (B2B).

Figure 7 - The Marketplaces relation to other Gatekeeper components

Ku dbo cf dpnqbsfe up b ǰzfmmpx qbhfǱ ejsfdupsz xifsf vtfst dbo tfbsdi gps uif uijoht iptufe
in the GK platform. It will provide a single -entry point for all users to explore, conceptualize,
test and consume the added value services they are interested in. It will also provide intuitive
User Interaction (UI) with modalities such as dialog -based assistants to discover and use
services seamlessly, according to user -centred design. Open calls will engage third parties
to enrich the Marketplace content and grow the ecosystem.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 43

Interoperability in the Marketplace will be an integral component as all offered services will
be coupled with their semantics and interoperability model annotations as defined in WP3.
The Marketplace will capitalize on this semantic metadata to offer more effective and rich
discovery of what the user seeks.

The Marketplace (based on the curre nt design) will support five categories of Things: a) Web
Services, b) Sensors, c) Medical devices, d) Platforms/Closed solutions and e) Data.

Figure 4 shows the relation of the Marketplace to other GK components. Essentially, the
Marketplaces expose Thing t *efwjdft. hbufxbzt fud0+ uispvhi uif IM qmbugpsnǮt Uijoht
Management System, Data Integration and Analytics to Users of all spaces, through intuitive
UI/UX (Web Portal and Voice modalities). It also functions as a brokerage mechanism as
users discover an d consume services and Things.

Currently, end -user requirements for all spaces are being collected and coupled with
technological specifications of interoperability (WP3) and platform integration (WP5) will
shape the Marketplace implementation, which can b e followed in future WP4 deliverables.

Gatekeeper Trust Authority

An example of Organisational Interoperability is the Trust Authority and Open Distributed
Ledger of Gatekeeper which is a blockchain -based platform that

ǒ is responsible for certifying the Th ings of the Gatekeeper platform based on a set of
standards and for calculating the corresponding levels of certification for these Things.
This will be used in order to secure the Things that will be included or submitted in
the Gatekeeper Marketplace.

ǒ it provides the capabilities for authenticating Things and providing authorisation rules
based on the aforementioned levels of certification.

ǒ is responsible for keeping an audit trail of all operations related to things in a privacy
preserving way, thus keeping a detailed history of the whole lifecycle of the Thing.
This will be used to support the privacy and security of the different spaces of end -
users of the Gatekeeper Platform and Marketplace

The solution will be based on Hyperledger Fabric chaincode for the calculation of the levels
of certification and for keeping the audit trail. It will also provide a connection with a Fabric
CA server in order to issue and manage certificates for the Thing s.

Interoperability mechanisms

The solution will be able to communicate with any infrastructure that is able to communicate
over HTTP(s) by exposing a RESTful API and by using JSON as the data format. The
component diagram depicting the communication betwe en this platform and any compatible
external system is depicted in the Figure below.

An example of Organisational but also Syntactic Interoperability is the Trust Authority
Validator. A subcomponent of the Trust Authority and Open Distributed Ledger compon ent,
which will be developed in frames of the Task 4.5, will be responsible for certifying the Things
after validating them against a set of standards.

This subcomponent, which will be called 'Validator' hereafter, is related with the
Interoperability aspe cts of the Gatekeeper platform since it will validate Things that comply
with the W3C WoT standards as described in T3.3. Furthermore, the Validator will validate
Things and assign to them levels of certification/trustiness based on the set of standards
considered in frames of T8.1.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 44

Figure 8 - Gatekeeper will use Hyperledger Fabric for security logs

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 45

11 Additional Considerations
This is a collection of additional considerations that impact interoperability.

11.1 Auditability and Provenance

The user data collected by pilots is highly sensitive. Informed consent is needed for the end -
user (the patient) to give healthcare professionals the right to use data collected from the
patient. Where patients lack the mental capacity for info rmed consent 15, other people will
have to make the decision for them. In a federated architecture, access to data coming from
medical devices may be subject to contractual agreements between parties and associated
legal constraints, including the EU General Data Protection Regulation 16. Parties may for
instance be required to track access to data and actions done with and/or on it. This may
warrant the use of a distributed ledger that would provide an auditable log. Knowing also
where the data comes from is i mportant if we wish to correctly interpret the data and that is
where data provenance comes into play.

11.2 Pull-based privacy business models

The Web has thrived on free services supported by advertising. In essence, the end -users
are the product, and the emphasis is on tracking user behaviour to support more effective
advertising. Users have become habituated to this and tend to see the cookie permission
requests as nuisances to be clicked away, to get to the services they want to access.

User tracking ma y feel harmless, but could easily be abused to charge some users more for
the same products or services, or to discriminate against users based upon their race, gender,
sexual preferences or religious beliefs. Companies could charge higher premiums for
med ical insurance based upon tracking data that suggests poor health or behaviours likely
to result in medical problems later in life.

We are already seeing problems for some people in respect to access to finance for large
purchases due to poor credit rating s that are based upon bad information that the people
affected are unable to correct. Consumers may find targeted advertising spooky if it suggests
that the advertisers appear to know a great deal about them.

Medical data is especially sensitive, requirin g very careful attention to privacy and security.
Just by holding medical data, companies put themselves at risk of fines and expensive
settlements to litigation on behalf of patients following data breaches. At the same time, there
are many potential ben efits to patients from companies being able to offer valuable services
based upon access to medical data.

This points to opportunities for business models in which the end -vtfsǮt qfstpobm ebub jt
provided to certified service providers on an as -needed basi s, and subject to restrictive terms
and conditions, and audit trails, along with strong recourse in case of abuse. End -users are
typically not legal or privacy experts, and unable or unwilling to deal with the details. The
solution is to involve a trusted qbsuz uibu mpplt bgufs uif vtfsǮt qsjwbdz cbtfe vqpo bo
bttfttnfou pg uif vtfsǮt buujuvef up sjtl. tpnfuijoh uibu dbo cf efufsnjofe cbtfe vqpo uif

15

 See the advice on mental capacit y and informed consent issued by the BMA

16 See the ICO Guide to the General Data Protection Regulation (GDPR) .

https://www.bma.org.uk/advice/employment/ethics/medical-students-ethics-toolkit/7-consent-to-treatment-lacking-capacity
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 46

vtfsǮt qfstpobm ijtupsz. boe uibu pg puifst mjlf ijn ps ifs0 Uifsf bsf qmfouz pg dibmmfohft up
be identified and discussed, and a W3C Workshop is now at an early stage of planning to
address this.

11.3 A Systems Perspective for Gatekeeper

This section attempts to provide a systems perspective for Gatekeeper and summarise the
choices the project will need to make and the interoperability implications thereof.

The overall aim of Gatekeeper is to provide for improved well -being for elderly and frail
patients along with improvements on the state of the art for caregivers and clinical staff. We
would like to combine a broad range of capabilities to offer a unified integrated approach for
monitoring patients that builds upon clinical readings with medical instruments, information
covering test results, existing medical conditions, medications and treatments, al ong with
continuous monitoring in so far as it is practical, e.g. fall detection, geolocation, pulse rate and
oxygenation, etc. Patients themselves can be encouraged to take regular readings, e.g. of
their weight, glucose levels, and to report their indivi dual sense of well -being.

Figure 9 - Contentment reporting

The devices involved use a heterogeneous mix of technologies, and the complexity that this
presents should be dealt with via forwarding and transforming data into a unifo rm graph data
framework that simplifies the development and maintenance of application services. This
involves the use of gateways that collect data from the devices at the network edge, using
whatever technologies are needed, and then forward this data to servers hosting graph
databases via secure connections using HTTP over TLS (HTTPS). One exception is where
doctors wish to remotely monitor ECG traces in real -time, for which Web Sockets over TLS
(WSS) is likely to be more effective.

The Gatekeeper platform would include the following major components:

 HTTP server for uploading data to the Gatekeeper platform. This may involve the use
of specific connector modules that transform data before ingesting it, subject to
validation against the o ntology agreed when the connector was registered.

 Graph database for storing data and locally applying efficient and scalable graph
algorithms, including those needed to support machine learning.

 Data relating to different patients is isolated into separat e graphs.
 An application server that hosts multiple Gatekeeper applications.
 Security module that supports authentication, access control and logging, as well as

being able to summon security staff and take remedial action on detecting attacks.
 Notificatio ns module for sending alerts to patients, caregivers and clinical staff.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 47

 HTTP server that provides an API for remote applications, allowing for federated
architectures that compartmentalise patient data for improved resilience to cyber -
attacks.

 HTTP client library for accessing remote information sources, e.g. REST APIs for
electronic health records using HL7 FHIR. This data is transformed upon ingesting into
the graph database.

 The Gatekeeper platform could also support a pull -model for other kind of inf ormation
sources as needed, using connector modules that use the HTTP client library to pull
data from other servers, and transform it before adding it to the database.

 A stream processing system capable of processing very large amounts of data. This
could be used to handle data a) as it is ingested into Gatekeeper, and b) as a means
to batch process data, e.g. for machine learning across data for many patients, subject
to strict controls to safeguard patient privacy.

 HTTP server for web applications design ed for patients, caregivers and clinical staff,
this would for instance allow clinical staff to set alarm thresholds, and to view an
joufhsbufe ebticpbse gps uif qbujfouǮt xfmm-being.

The main interoperability challenges include:

 Obtaining the technical in formation needed to interoperate with a broad variety of
medical and consumer devices. Device vendors may be unwilling to provide this
information, thereby limiting the choice of devices that Gatekeeper can utilise.

 Mapping data formats, identifiers and co ncepts when ingesting information from
external sources. Where practical this can rely on existing mappings to RDF.

 Supporting patient aids and clinical decision support tools in respect to applying
analytics and AI on the collected data in a safe manner.

Some design challenges include:

 Whether to use an existing RDF triple store, or to develop a new graph database
fohjof gps ǰdivoltǱ bt bo bnbmhbn pg TFH boe Rspqfsuz Isbqit0

 Whether to integrate a rule engine or to rely on a graph traversal and manipulatio n
API? Rules would make for a higher level of abstraction when designing services.
Example rules would be those that raise alarms when particular readings exceed
upper or lower thresholds set by clinical staff. Rules could infer hidden states from a
combin ation of information sources. Rules could further be used to make suggestions
to patients, e.g. reminders to take medications, to weigh themselves, etc.

 The potential role of SPARQL, OWL and SHACL as RDF standards for respectively,
queries, ontologies and constraints?

 Understanding which problems for caregivers and clinical staff could be addressed
by Gatekeeper.

 Understanding the functional requirements for the web user interface for patients,
caregivers and clinical staff.

 Applying those requirements to c reate the corresponding client and server -side
resources, e.g. JavaScript libraries, images, style sheets and media files, as needed to
work effectively on mobile and desktop devices.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 48

12 Conclusions
Gatekeeper seeks to improve the well -being of elderly an d frail patients, starting from
existing approaches and integrating a broad variety of techniques for monitoring physical and
mental health. The Star Trek medical dashboard provides one vision for what that could
mean, but is lacking in many respects for t he practical needs of a real -world solution. Can we
jefoujgz tpnf frvbmmz dpnqfmmjoh xbzt up qsftfou uif qbujfouǮt qiztjdbm boe nfoubm ifbmui.
and how it is changing over time, that provides an effective tool to support modern practices
for home healthcare ?

Figure 10 - Medical dashboard

Can Gatekeeper provide the real-world equivalent of the Star Trek sick bay monitor in respect to
the well-being of elderly and frail patients? With grateful thanks to Robert Allison.

This vision calls for a uniform framework for storing and processing information, so that
application services are decoupled from the complexity of the heterogeneous information
sources, data formats and protocols . The proposed Gatekeeper platform integrates a graph
database, statistics, rule engine and graph algorithms. HTTP is used for uploading data to the
platform from sensors, for access to electronic health records, and for the means to provide
Web based too ls for patients, caregivers and clinical staff.

A uniform framework for storing and manipulating information will make it much easier to
create services that combine multiple information sources. The main barriers to achieving this
include: a) having the i magination and ambition to fully understand what is needed to support
modern practices for home healthcare, b) the reluctance of device vendors to provide the
information needed to implement gateways for ingesting data from sensor devices, and c)
challenge s for integrating different information sources using different data formats, data
models and underlying concepts. All of these barriers can be overcome if we work together!

https://blogs.sas.com/content/sastraining/2017/06/05/a-medical-dashboard-for-the-star-trek-fans/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 49

Appendix A Gatekeeper technologies
This section describes the solutions to be provided by each of the Gatekeeper technology
partners, along with the associated interoperability considerations

 Short description of the technology, its purpose and relevance to the pilots

 Status of the implementation, e.g. maturity, availability and level of support

 What are the interoperability mechanisms for integrating this technology, including
the list of standards used

 Where to find more details, e.g. online documentation

 Point of contact for any questions (email address and/or website link)

A.1 HL7

HL7 is a standards development organization that provides a comprehensive framework and
related s tandards for the exchange, integration, sharing, and retrieval of electronic health
information. HL7 standards cover different aspects of interoperability (e.g. information
models; service and system functional specifications; API) at different abstraction levels (e.g.
conceptual, logical, implementable).

The most relevant standard for the purpose of this project is HL7 FHIR. HL7 FHIR is a fully
computable standard that combines the best features of HL7's v2, HL7 v3 and CDA p roduct
lines while leveraging the latest web standards and applying a tight focus on
implementability. FHIR solutions are built from a set of modular components called
"Resources". FHIR is mainly designed for REST applications, but it can also support docu ment -
based, messaging and services -based interoperability paradigms. FHIR resources are
typically accessed through HTTP -based REST APIs and can be represented with XML, JSON
or RDF turtle. The RDF turtle representation will be likely superseded in the next release by
JSON-LD 1.1. The last published HL7 FHIR release is R4, including normative content.

FHIR is widely adopted at the global level and it is supported by a large community of
practice .

FHIR profiles and implementation guides play a relevant role in the adoption and usage of
the base standard, allowing for validation and increasing interoperability. They define, by
means of conformance resources, how FHIR should be used in specific contex ts and scopes.
They also specify which terminologies (e.g. LOINC, SNOMED CT) to use and how. For the
scope of this project is worth to mention the International Patient Summary FHIR
Implementation Guide. The International Patient Summary (see overview) is a cross-SDOs
initiative (e.g. HL7, ISO, CEN, IHE), that is also funded by the EC, and specifies a minimal set of
health information that can be used every where by anyone.

For more details, please contact: Giorgio Cangioli <giorgio.cangioli@hl7europe.org>.

A.2 Mysphera

Mysphera can contribute monitoring software they previously developed for use with elderly
patients at home. This includes a mobile app for Android and iOS phones, and tablets that
collects battery level and GPS location data for geofencing, as well as using Bluetooth Low

about:blank
about:blank
about:blank
https://build.fhir.org/ig/HL7/fhir-ips/
https://build.fhir.org/ig/HL7/fhir-ips/
http://bit.ly/IPS-Story

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 50

Energy to collect data from smart home sensors for temperature, humidity, a magnetic
sensor for door opening and closing, a nd presence in rooms.

 What kinds of sensors specifically and how are they to be installed and configured?

o The devices for the home monitoring are developed by Mysphera, under the
brand of LOCS system. There is one device that includes a presence sensor,
based on Texas Instrument PIR sensor, as well as temperature and humidity
sensors also from Texas Instruments, HDC1010. The magnetic sensor used for
open/close door (or window, etc.) is also based on Texas Instrument sensors.

o The configuration is done by linking the MAC addresses of BLE chip to a code
of the installation, conforming a kit, and configuring the gateway to collect and
process only the data coming from those MAC addresses. Also, each device is
assigned a label to indicate in which room is goin g to be installed, and all those
fields are kept in the central database of the solution.

o Installation is done by a technician that visits the designated home with the
code that corresponds to the kit, places the sensors, switches them on and
checks with t he gateway that the signal from all the sensors is well received.
In occasions adjustment on sensor placement or gateway placement need to
be done to ensure proper reception of the signals from all devices.

 Do the elderly patients need to keep the phones with them at all times?

o The smartphones of the elderly patients are only providing the outdoor
functionality, so it is only needed when the elderly leave the home to go
pvutjef0 Cu ipnf. uifz epoǮu offe up dbssz boz efwjdf. uif ipnf npojupsjoh
system works totally unobtrusively, without any interaction of the elderly user.

 Kt uifsf b ipnf hbufxbz puifs uibo uif qbujfouǮt qipofA Kg tp qmfbtf hjwf efubjmt0

o For the home monitoring there is gateway that currently is using an Android
Tablet (7.x+) as platform and is executing LOCS gateway software, this tablet is
placed in the home at a fixed point where it can receive the Bluetooth
transmission from all the devices at home, and it incorporates a 3G SIM card to
send the raw and processed data to the cloud server

The mobile application uses the 3G/4G cellular network to upload data to a cloud server
running FIWARE. This data is then exposed to Android smartphone apps (one designed for
elderly patients, the other for caregivers, e.g. family members and relatives). A desktop web
application is used to provide access to clinical staff.

 How is geofencing configured and who by?

o Geofencing is configured in the caregivers app and in the professional web
portal and by the informal caregiver or the professional caregiver. Th is
functionality is only activated if the outdoor monitoring application is installed
and assigned to the installation code of the elderly person. That means that an
elderly person can have the home monitoring alone, the outdoor monitoring
alone or both so lutions combined.

 How are alerts notified to the patients, caregivers and clinical staff? This question
seeks to understand the technical means, e.g. SMS, polling, or a push -mechanism over
HTTP or Web Sockets, along with the standards used to achieve this.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 51

o Alerts are shown in the app and in the web portal, as well as by push
mechanism in the smartphone of the informal caregiver that is using the app.
Other mechanisms, such as email and SMS are in the roadmap for future
improvements of the solution.

The soft ware was developed in a previous European project (ACTIVAGE) and has been
deployed in 530 homes with over 1500 users for over 12 months. MYSPHERA commits to
supporting the software for the lifetime of the Gatekeeper project.

The mobile apps are available o n Google Play and the Apple App Store.

 What OS versions are supported for Android and IoS?

o Available in the stores are the following apps:

 LOCS Outdoor: only supported in Android 8 or above

 LOCS Family: it supports Android 6 or above, and iOS 8 or above

 How are the applications installed and configured?

o The applications that are used by the elderly person (i.e. home monitoring
gateway or outdoor monitoring) are installed and configured by the technical
team in Mysphera in charge of preparing the installat ion, and final
configurations may be done also by the care service providers once they
decide which user receives the installation.

o The informal caregiver app is installed directly by the user himself, but he/she
receives training and support for configura tion during the installation of the
home solution and through the use of video tutorials or support calls.

The cloud server uses HTTPS along with user ID and password, together with a device -based
JWT token for authentication. The server is deployed as a D ocker container for easier
installation. It further supports the ETSI NGSI v2 based context information manager. Location
data is exposed using GeoJSON.

 Is the HTTPS server for the mobile apps and web application integrated as part of
FIWARE or is it a separate component?

The HTTPS server is integrated as part of FIWARE that on one hand is managing
authentication and role access, and on the other hand offers an API to access and sending
data, and as such it could be used to develop new applications that use the data collected
by the solution.

For more details, please contact: Pila Sala <psala@mysphera.com>.

A.3 Samsung
Samsung are contributing a variety of technologies:

Samsung Health ǫ a mobile application pre -installed on the Galaxy S3 phone and
downloadab le from the Samsung Galaxy Store. Versions are available for Android 6+, iOS9+
and Tizen (for Samsung Gear and Galaxy watches). The application collects data from user
interaction with the app, on -phone sensors, wristbands and watches, smart scales and oth er
smart home devices. Data is viewable within the mobile app, and is also uploaded to the
Samsung cloud.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 52

ACTIVAGE ǫ is an application developed by Samsung (for the ACTIVAGE project?) that runs
as a mobile web app in a browser or as a native app on Android 6+ and Tizen. It relies on the
user wearing a smartwatch to detect movement (e.g. to count steps, monitor sleep patterns),
and transfers this data to a smart phone app via Bluetooth Low Energy. The phone uploads
the data to a cloud server for further anal ysis, and monitoring by clinical staff.

 How are hydration, blood glucose, blood pressure, weight, caffeine intake monitored,
TV viewing, bathroom usage etc. monitored? What are the standards and data
formats?

Bixby Voice ǫ a virtual assistant implemented as a mobile app on Samsung phones. The
assistant can invoke the Android API to implement a variety of services, e.g. to take a
photograph, to set alarms as reminders, to show a movie on a connected smart TV, etc.

 How is Bixby programmed, and wh at would this entail for Gatekeeper pilots?

Samsung SmartThings Hub ǫ this is a data relay that transfers data collected from SmartThing
sensors (using Bluetooth, Z -Wave or WiFi) and uploads it to a cloud server. Likewise,
applications running in the cloud can invoke SmartThing actuators via the hub. The available
sensors include motion sensors, energy consumption sensors, magnetic door/window
opening and closing sensors.

 How can Gat ekeeper pilots interface to this data, either via the cloud or directly via the
hub?

 Could Gatekeeper pilots develop applications for execution on the hub?

 Could Gatekeeper pilots develop applications for execution on the cloud server?

 How would Gatekeeper pilots utilise the security and device management
capabilities, e.g. as exposed by Samsung Knox?

Samsung Galaxy Watch ǫ a smartwatch with Bluetooth, NFC, WiFi, GPS, accelerometer,
barometer, gyro sensor, heart -rate sensor, light sensor, micropho ne and vibrator.

 Jpx epft uif offe up sfhvmbsmz sfdibshf uif efwjdfǮt cbuufsz fggfdu jut qpufoujbm vtf
gps npojupsjoh uif vtfsǮt tmffq qbuufsot. ifbsu sbuf. gbmm efufdujpo fudA

For more details, please contact: Carlo Allocca <c.allocca@samsung.com>.

A.5 BioAssist
BioAssist has developed the HeartAround platform as a means to monitor elderly patients
who are living independently at home. Data is collected from wearables and other sensors
and relayed via a tablet -based mobile app to the cloud where it is stored and used for
analytics, generation of alarms, and web -based user interfaces for patients, relatives, doctors
and other caregivers.

Sensors are connected to the tablet via Bluetooth and include a pulse oximete r, blood
pressure meter, glucometer, spirometer, weighing scale, and physical activity tracker.
Supported devices are from manufacturers such as manufacturers such as iHealth, Beurer,
Phillips, Ascensia, MIR, Jumper. Patients are directed to take daily rea dings which are
automatically transmitted to the cloud server.

Each patient is associated with a cloud -based electronic health record (EHR) which includes
medical test results, medications and allergies. When the measurements taken by the patient

https://www.samsung.com/global/galaxy/apps/smartthings/
https://www.samsung.com/global/galaxy/apps/smartthings/
https://heartaround.com/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 53

exceeds g iven thresholds, the doctor is notified by a preselected means, e.g. push
notification, email or SMS. The doctor is able to have a video chat with the patient on a weekly
basis via the tablet.

For more details, please contact: Ilias Maglogiannis <imaglo@bioassist.gr>.

A.6 Biobeat
Figure 11 - Biobeat sensor and monitor

Biobeat has developed a monitoring platform consisting of wearable wireless optical sensors.
We have two configurations ǫ b qbudi npojups buubdife up uif qbujfoutǮ diftu ps b xsjtuxbudi
monitor. The wristwatch works for 3 days and then is recharged for up to 2 ho urs, and is
intended mainly for prolonged monitoring, i.e. monitoring of chronic patients at home or home
care facilities. The patch works for 5 -7 days, it is disposable, and intended for pre -hospital
and in-hospital use. They transmit 15 parameters in rea l time and in several measurement
sbuft uispvhi DU up b hbufxbz *ps bo joejwjevbmǮt dfmm qipof jg bu ipnf+ boe gspn uif
hbufxbz1dfmm qipof up uif dpnqbozǮt dmpve *CX%-based) and from there to the health care
providers.

As it is cloud based there is no limit to how many people can be monitored at any given time
and for how long. The data can be displayed on a tablet, laptop, monitor screen, etc. The data
includes non -invasive cuffless blood pressure, pulse pressure, mean arterial pressure, heart
rate, heart rate variability, respiratory rate, blood oxygen saturation, stroke volume, cardiac
output, cardiac index, systemic vascular resistance, temperature, sweat, movement, and one -
lead ECG (in the patch only), all are contin uously measured in all patients. For each parameter
an alert is set, and the caregiver can look at the trend from the moment the patient is
monitored.

We have FDA clearance for non -invasive cuffless blood pressure, heart rate and saturation,
and CE Mark approval. We follow strict HIPAA, GDPR and privacy protection regulations. The
data in our cloud is de -identified. Another feature is based on our advanced algorithms. We
can analyze the big data collected, which is comprised of hundreds of millions of
measu rement points.

C09 Ofejtbouí
Ofejtbouí qspwjeft b dmpve-based hub solution (ELIOT) to collect patient data via the 3G/4G
cellular network direct from medical IoT devices, e.g. glucometer, weighing scale, blood
pressure meter, ECG event recorder, spiromete s boe qvmtf pyjnfufs0 Ofejtbouí uifntfmwft

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 54

can supply blood pressure meters, glucometers and weighing scales. Data is exposed by the
cloud server via a REST API as JSON structured data following the HL7 FHIR v1 or v4 format.

For more details, please contac t: Imad Ahmed <imad.ahmed@medisante -group.com>.

A.8 UPM
UPM has previously developed monitoring software in support of the treatment of
RbsljotpoǮt ejtfbtf0 Uijt jodmveft b npcjmf bqq gps Coespje qipoft uibu vtft uif qipofǮt
built - in accelerometer to monit or movement, tremors and falls. The raw sensor data is pre -
processed and periodically transmitted to a cloud -based server (HOOP) on Ubuntu Linux,
which makes the processed data available to the web application used by clinical staff to
npojups uif qbujfouǮs well -being.

The software was developed in a previous European project (ACTIVAGE) and has been
deployed in a pilot with 50 patients over a period of many months. UPM commits to
supporting the software for the lifetime of the Gatekeeper project.

The mobile app is available on Google Play and supports Android version 6+. UPM is
considering extending the app to work with Bluetooth -based wristbands and insole
detectors, as a means to gather data when the end user has put the phone down. These
devices would be qbjsfe xjui uif vtfsǮt qipof boe dmpve tfswfs cz dmjojdbm tubgg evsjoh uif
enrolment process.

UPM is also looking at the potential for integrating with the Mozilla software stack for IoT
gateways, as a means to collect data and forward it to the cloud and to local web applications.

The cloud server provides a REST API over HTTPS using JSON Web tokens (JWT, RFC 7519 17)
as OAuth 2.0 Bearer Tokens for access control, and a JSON based format for motion data that
was developed by UPM. Data can be provided as per JN9Ǯt tqfdjgjdbujpot gps joufhsbujpo xjui
electronic health records.

Short description of the API:

 HTTPS POST to upload a block of JSON data

 HTTPS GET to query for a block of JSON data

The Web application is designed to work with both desktop and mobile ph ones and tablets,
and uses a conventional user ID and password pair over HTTPS for authentication. Clinical
staff can register to be notified by SMS messages to their phone when the system infers a
strong likelihood that the patient has fallen down and ne eds attention.

For more details, please contact: Eugenio Gaeta <eugenio.gaeta@lst.tfo.upm.es>.

A.9 Sense4Care
Sense4Care provides a wearable medical device , called STAT-ON, for monitoring symptoms
pg RbsljotpoǮt ejtfbtf0 Opujpo ebub jt usbotgfssfe wjb Dmvfuppui gps qspdfttjoh cz b npcjmf
app, which provides access to the data in PDF and CSV formats. The data is not sent to the
cloud.

17 https://oauth.net/2/jwt/

https://oauth.net/2/jwt/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 55

Figure 122 ı STAT-ON sensor by Sense4Care

The neurologist accesses to data once they get the sensor after a week of monitoring. Then,
they download the information to a smartphone that generates a PDF report.

 How would Gatekeeper pilots be able to integrate with this so lution?

The Gatekeeper project provides a solution that enables the possibility of:

 Having data m ore accessible to healthcare staff

 Standardised data

 Organised digital data

 Repository of patients

o Evaluation of disease evolution

o Data analytics

o Patients clustering by treatment

In GATEKEEPER, the STAT-ON app will have a new characteristic that will enable to upload
the data obtained to the Gatekeeper system. It will also upload the PDF and the CSV file which
is the raw data for specific analysis.

The uploaded information will be integrated in the Gatekeeper platform via Web of Things
that will enable the healthcare professional and to the patient access easily to objective data
of the motor state of the patient in order to adjust better a tailored medication.

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 56

Figure 132 ı STAT-ON sensor by Sense4Care

For more details, please contact: Daniel Rodriguez <daniel.rodriguez@sense4care.com >.

A.10 University of Ioannina
The University of Ioannina has developed algorithms for personalised, adaptive care of
advanced type 2 diabetes. This is based upon machine learning, and can be embedded as
part of mobile apps that are connected to glucometers, e.g. the Medtronic Guardian Sensor
3, or Dexcom G6 or Menarini GlucoMen Day CGM.

For more details, please contact: E. I. Georga <egeorga@gmail.com >.

A.11 Tecnalia
Tecnalia can contribute with a Virtual Reality (VR) training software for stroke detection and
mitigation. This will be provided through a web application combined with VR headset
(Oculus or HTC Vive) based on WebXR technology. This application is addressing the S troke
Use Case in Basque Country and it will allow to simulate different real situations when stroke
happens and help to learn families and patients how to identify them and how to react to
minimize the risks.

The design and development will be done toget her with Osakidetza. The TRL of the VR
headsets and the SW to be used is 9.

In order to support a wide variety of hardware form factors, we will use WebXR, which is a
group of W3C standards used together to provide the interfaces necessary to enable
develo pers to build compelling, comfortable, and safe immersive applications on the web 18.

For more details, please contact: Leire Bastida <Leire.Bastida@tecnalia.com>.

A.12 Engineering
Uif FOEpbdi tpmvujpo jt b ǰejhjubm uifsbqfvujdǱ uppm intended for patients o r citizens at risk of
Type 2 Diabetes Mellitus (T2D) to unobtrusively monitor (physical activities, nutrition) and to

18

 https://www.w3.org/TR/webxr/

https://www.w3.org/TR/webxr/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 57

coach them with personalized feedback towards a healthier lifestyle. The coaching is
fobcmfe cz ifbmuidbsf qspgfttjpobmt xip ǰqsftdsjcf" b mobile application to the patient to:

1. view the information collected by the patient;

2. easily tailor and configure the app on patient profile defining plans and goals and

3. contact (one -way) the patient to coach, (re)plan, meet by keeping at minimum the
time-consuming activities.

Status of the implementation, e.g. maturity, availability and level of support

The implementation has been validated in 2 healthcare institutions and in 4 companies. It is
currently at TRL7.

Interoperability mechanisms

The soluti on, as a whole, is strongly based on the adoption of the HL7 FHIR standard used to
exchange information between patients and professionals. As such, DMCoach is ready to be
integrated with existing EMR systems compatible with such standards.

From a more technical point -of-view DMCoach comes with a back -end APIs used for data
storage enabled by web services RESTful and fully supporting the FHIR interoperability
specification.

For data collection it relies on Google Fit and Apple Health Kit.

Technological Classification

Following the classification provided in Figure 1, DMCoach exploits data from devices and
sensors compliant with Google Fit and Apple health, that use short range protocols to sync
with their proprietary applications, while local Google and Apple mobile apps act as a
gateway to uniform data representation at syntactic level.

Table 2 - Data types (Technical Interoperability)

DEVICE PROTOCOLS BRAND

Smart bands (steps) Android devices can sync
with Google Fit . iOS
devices can likewise sync
with Apple HealthKit . Both
companies provide APIs
for access from trusted
apps

Any Google Fit or Apple
HealthKit compliant device

Smart scales (Weight)

Workout

HR Monitors (Heart Rate)

Table 3 - Cloud Gateways (Syntactic Interoperability)

Cloud Data Sever PROTOCOLS BRAND

GoogleFit Cloud server HTML\ JSON Google

https://developers.google.com/fit
https://developer.apple.com/healthkit/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 58

Apple Health Server HTML\ JSON Apple

DMCoach takes care also of ingesting data from these sources at a semantic level, and
translating and storing data for export to a FHIR server.

Table 4 - Data Repository (Semantic Interoperability)

NAME Solution GK reference ontology

DMCoach FHIR Server HAPI-FHIR FHIR

More information about the DMCoach solution can be found at: www.dmcoach.eu

Or contact: Valentina Di Giacomo < valentina.digiacomo@eng.it >.

A.13 CERTH
Diabetes Management Platform (DMP)

Diabetes Type 2 Management Platform is proposing a novel mHealth management system
based on software and hardware (commercial devices) solutions that are part of a
comprehensive ap proach to managing and supporting patients with diabetes. Realizing the
multi - faceted nature of the management of diabetes, a systematic, multi -pronged and an
integrated approach like the DMP is required for promoting self -care practices among
diabetic pat ients to avert any long -term complications. The proposed solution focuses on
monitoring patients' adherence to medical treatment, physiological and environmental
variables but also on providing a personalised guidance platform transmitting all the
measurem ents to a prediction engine for giving appropriate feedback to the user on how to
manage diabetes

The types of parameters monitored by the component are: General information about the
patient (e.g. name, birth date, gender), a medical summary consisting o f the most important
clinical patient data (e.g. allergies, current medical problems, medical implants, or major
surgical procedures during the last six months), a list of the current medication including all
prescribed medicines that the patient is curren tly taking, data from the Integrated Medical
Devices Data from the Care Plan, community Data and educational Activities

Interoperability mechanisms

The solution, as a whole, is strongly based on the adoption of the HL7 FHIR standard used to
exchange infor mation between patients, informal caregivers and healthcare professionals.

Furthermore, the system is built on microservices. Thus, each component has an API
communication protocol that controls data exchange. The platform can be integrated with
any device /infrastructure that provides open connectivity.

Table 5 - Data Repository (Semantic Interoperability)

NAME Solution GK reference ontology

http://www.dmcoach.eu/
mailto:valentina.digiacomo@eng.it

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 59

DMP FHIR Server HAPI-FHIR FHIR

Table 6 - Data types (Technical Interoperability)

DEVICE PROTOCOLS BRAND

Smart bands (Activity) Proprietary and vendor
dependent

Medisante (A.6)

Garmin,

Fitbit

Samsung (A.3)

Smart scales (BMI)

Smart sensors
(Sleep/Stress)

BG/BP,/Purse Monitors

Table 7 - Cloud Gateways (Syntactic Interoperability)

Cloud Data Sever PROTOCOLS BRAND

Amazon Cloud server HTML\ JSON Medisante

Garmin Health Server HTML\ JSON Garmin

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 60

Trust Authority and Open Distributed Ledger

Trust Authority and Open Distributed Ledger is a blockchain -based platform that

ǒ is responsible for certifying the Things of the Gate keeper platform based on a set of
standards and for calculating the corresponding levels of certification for these Things .

ǒ it provides the capabilities for authenticating Things and providing authorisation rules
based on the aforementioned levels of certification.

ǒ is responsible for keeping an audit trail of all operations related to things in a privacy
preserving way, th us keeping a detailed history of the whole lifecycle of the Thing.

The solution will be based on Hyperledger Fabric chaincode for the calculation of the levels
of certification and for keeping the audit trail. It will also provide a connection with a Fabr ic
CA server in order to issue and manage certificates for the Things.

Interoperability mechanisms

The solution will be able to communicate with any infrastructure that is able to communicate
over HTTP(s) by exposing a RESTful API and by using JSON as the data format. The
component diagram depicting the communication between this platform and any compatible
external system is depicted in the Figure below.

Figure 14 - Hyperledger Fabric

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 61

Appendix B Graph Databases
A uniform f ramework for data, metadata and rules will simplify the development of
application services by decoupling them from the details of heterogeneous information
sources, devices, protocols, data formats and data models. This section explores the potential
for simplifying working with graph data and rules and sketches an architecture for remote
access.

Gatekeeper could integrate with an existing graph database such as an RDF triple store, see,
e.g. the long list on Wikipedia . This would have the advantage of starting from a mature
implementation.

One such database is the open source Eclipse RDF4J project, which offers a Java API for
traversing and manipulating RDF graphs. This level of API could then be used to support a
higher - level framework than raw triples, which would be easier for the average developer.

Another approach would b e to implement our own database engine that directly supports a
high-level framework for traversing and manipulating graphs.

For Gatekeeper, we would also seek to create a high -level rule language that makes it easier
to describe common behaviours, e.g. re minders to take medications, upper and lower
thresholds for alarms, and what to do when they are breached. Such rules could be
expressed as chunks (see below) and integrate with the stream processing system.

B.1 Cognitive Databases
A cognitive database hol ds chunks: col<lections of properties that include references to other
chunks. Chunks can be associated with statistical information reflecting prior knowledge and
past experience. Cognitive databases have the potential to hold vast amounts of information
similar to the cerebral cortex. Cognitive databases can be local or remote and shared with
multiple cognitive agents, subject to access control policies.

Memory retrieval fits Web architecture, supporting remote invocation of graph algorithms in
a request/ response pattern rather like HTTP. Retrieval is analogous to Web search engines
where results are computed based upon what is likely to be most relevant to the user. It is
often impractical and inappropriate to try to return the complete set of matches.

Cognitive databases support a variety of graph algorithms that are executed local to the data,
and capable of scaling to Big Data. These algorithms include:

 Basic storage and retrieval

 Specialised algorithms for natural language, spatial and temporal reasoning

 Algorithms for data analytics and machine learning

B.2 Chunks
Chunks is an amalgam of RDF and LPG, that makes it easy to work with entities that have
multiple properties, and has a simpler syntax compared to JSON -LD. Each chunk has a type,
an identifier, and set of properties, whose values name other chunks to form graphs. In more
detail, property values can be Booleans (true or false), numbers, names, string literals (in
double quotes) or comma separated lists there -of. Property names themselv es can act as
chunk identifiers.

https://en.wikipedia.org/wiki/Comparison_of_triplestores
https://rdf4j.org/
https://rdf4j.org/documentation/programming/model/

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 62

Here are some example chunks:

friend f34 {
 name Joan
}

friend {
 name Jenny
 likes f34
}

 Where friend is a chunk type, f34 is a chunk identifier,
name and likes are property names, Joan and Jenny are
also name s.

 likes f34 signifies that Jenny likes Joan via the link to the
chunk for Joan.

 Missing chunk identifiers are automatically assigned when
inserting a chunk into a graph

 Uses line breaks as punctuation

You can also use a short form for simple directed labelled relationships, e.g.

dog kindof mammal

which is equivalent to:

kindof {
 subject dog
 object mammal
}

The latter form is better if you want to annotate the relationship with additional properties,
something that is awkward in RDF a s it requires the use of reification.

To relate chunks to RDF you can use @rdfmap, for instance:

@rdfmap {
 dog http://example.com/ns/dog
 cat http://example.com/ns/car
}

You can use @base to set a default base URI for names that are not declared e xplicitly, e.g.

@rdfmap {
 @base http://example.com/ns
 dog http://example.com/ns/dog
 cat http://example.com/ns/cat
}

Which would map the mouse to http://example.com/ns/mouse.

You can use @prefix for defining URI prefixes, e.g.

@prefix p1 {
 ex: http://example.com/ns/
}

@rdfmap {
 @prefix p1
 dog ex:dog
 cat ex:cat
}

D3.3 ǫ Interoperability within Gatekeeper

Version 1.0 I 2020-03-31 I GATEKEEPER ª 63

It may often be more convenient to refer to an external collection of @rdfmap and @prefix
declarations, rather than inlining them e.g.

@rdfmap from http://example. com/mappings

If there are multiple conflicting definitions, the most recent will override earlier ones.

Note: people familiar with JSON -LD would probably suggest using @context instead
of @rdfmap, however, that would be confusing given that we want to use the @context in
respect to reasoning in multiple contexts.

B.3 Chunk API
This section describes an API developed for a JavaScript library for chunk graphs along with
a condition -action rule engine. JavaScript is a dynamically typed programming language , and
the API may need some adjustments for use with statically typed languages such as Java.

The JavaScript library includes a rule engine in which the rules are themselves expressed as
chunks. Each rule has one or more conditions and one or more actions. The conditions are
matched to module buffers which hold a single chunk. The actions either directly update the
module buffers or invoke graph algorithms that may indirectly update the module buffers.
This design was inspired by the popular ACT-R cognitive science architecture. For more
details, see introduction to chunks and rules .

Figure 15 - Cognitive architecture

Agents make use of modules that act as chunk databases and are accessed via buffers.
These buffers correspond to bundles of nerve fibres that connect the basal ganglia to the
cerebral cortex.

Here are some operations you can perform on a chunk graph:

new ChunkGraph(source)

Create a new graph from a text string containing the chunks and links.

http://act-r.psy.cmu.edu/
https://www.w3.org/Data/demos/chunks/chunks.html#rules

