

Deliverable No. D3.2 Due Date 31/07/2020

Description
Report with the overall architecture of the GATEKEEPER
ecosystem and detailed description of the main components

Type Report
Dissemination
Level

PU

Work Package No. WP3
Work Package
Title

GATEKEEPER Web of Things
(WOT) Reference Architecture

Version 1 Status Final

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement Nº 857223

D3.2 Overall GATEKEEPER architecture

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 3

Authors

Name and surname Partner name e-mail

Paolo Zampognaro ENG paolo.zampognaro@eng.it

Valentina Di Giacomo ENG valentina.digiacomo@eng.it

Federica Saccà ENG federica.sacca@eng.it

History

Key data
Keywords Reference architecture, GATEKEEPER Platform

Lead Editor ENG

Internal Reviewer(s) BB, HPE

Date Version Change

07/02/2020 0.1 Table of content and initial content

14/04/2020 0.2 Revision of ToC and contributions

13/05/2020 0.3 Integration of content up to the date

12/06/2020 0.4 Integration of 1st round of contributions

03/07/2020 0.5 Integration of 2nd set of contributions

16/07/2020 0.6 Revision of content

24/07/2020 0.7 Addressed BB internal review and other minor fixes

27/07/2020 0.8 Addressed HPE internal review and other minor fixes

29/07/2020 0.9 Version for Quality check

31/07/2020 1.0 Final version

mailto:paolo.zampognaro@eng.it
mailto:valentina.digiacomo@eng.it
mailto:federica.sacca@eng.it

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 4

Abstract
This deliverable contains a description of the GATEKEEPER Platform Architecture, the
components and services that build the platform, their role and their interconnections.

It describes the underlying architectural principles leading the design and gives a
detailed description of the components that are the building blocks of the GATEKEEPER
platform. It also lists a first set of interactions that describe the behaviour of the platform
and how its components interact. The Platform Architecture is still evolving, thus a
second version of this document will be released in March 2021, describing the final
version of the architecture.

Statement of originality
This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation or both.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 5

Table of contents
TABLE OF CONTENTS ... 5

LIST OF TABLES .. 7

LIST OF FIGURES ... 8

INTRODUCTION ... 9

1 ARCHITECTURE DEFINITION PRINCIPLES ... 11

1.1 WEB OF THINGS ... 11

1.1.1 Principles for GATEKEEPER data .. 12

1.1.2 GATEKEEPER Web of Thing based architecture ... 13

1.1.3 Role of WoT Thing Description ... 15

1.1.4 Role of SAREF and relation with Thing Description ... 21

1.1.5 Role of FHIR and relation with Thing Description ... 23

1.2 GATEKEEPER STAKEHOLDERS .. 24

1.3 SECURITY AND PRIVACY CONSIDERATIONS .. 26

1.3.1 Infrastructure security ... 28

2 GATEKEEPER ARCHITECTURE ... 29

2.1 LOGICAL ARCHITECTURE .. 29

2.2 DEPLOYMENT ARCHITECTURE ... 32

2.2.1 GATEKEEPER Cloud Infrastructure .. 32

2.2.2 Reference Deployment model ... 34

2.2.3 Deployment alternatives .. 35

3 INFORMATION MODEL .. 36

3.1 HEALTH MEASURES ... 37

3.1.1 GATEKEEPER FHIR profile ... 38

3.2 DATA STRUCTURES ARISING FROM THE INPUT-OUTPUT REQUIREMENTS OF THE AI/ML

MODELS .. 40

3.3 STANDARDS ... 42

4 GATEKEEPER COMPONENTS ... 46

4.1 THINGSMANAGEMENTSYSTEM ... 46

4.2 THINGSDIRECTORY .. 50

4.3 BIGDATAINFRASTRUCTURESERVICE ... 51

4.4 GK-INTEGRATIONENGINE .. 53

4.5 GK-FHIRSERVER .. 55

4.6 GK-SEMANTICDATALAKE .. 58

4.7 TRUSTAUTHORITY .. 59

4.8 MARKETSERVICE .. 60

4.9 HEALTHACTIVITYMONITORING ... 62

4.10 AIPERSONALIZEDRISKDETECTION&ASSESSMENT ... 66

PREDICTIVE MODELLING (INDUCTIVE REASONING) ... 67

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 6

4.11 INTELLIGENTMEDICALDEVICECONNECTORS .. 71

4.12 AUTHORINGTOOLFORDASHBOARDS ... 78

4.13 MULTIROBOTCONNECTORS ... 78

5 COMPONENTS INTERACTIONS ... 81

5.1 GKPILOT_01 .. 82

5.2 GKPILOT_02 ... 83

5.3 GKPILOT_03 ... 84

5.4 GKPILOT_04 ... 85

5.5 GKPILOT_05 .. 86

5.6 GKPILOT_06 ... 87

5.7 GKPILOT_07 .. 88

5.8 GKPILOT_08 .. 89

5.9 GKPILOT_09 .. 90

5.10 GKPLAT_01 ... 91

5.11 GKPLAT_02 ... 92

5.12 GKPLAT_03 ... 93

5.13 GKPLAT_04 ... 94

5.14 GKPLAT_05 ... 95

5.15 GKPLAT_06 .. 96

5.16 GKPLAT_07 .. 97

5.17 GKPLAT_08 ... 97

5.18 GKPLAT_09 ..99

5.19 GKPLAT_10 .. 100

5.20 GKPLAT_11 .. 101

5.21 GKPLAT_12 ... 102

6 CONCLUSIONS ... 103

7 REFERENCES ... 104

APPENDIX A USER STORIES... 105

APPENDIX B PLATFORM REQUIREMENTS ... 107

APPENDIX C PLATFORM COMPONENTS INTERACTIONS OVERVIEW 112

APPENDIX D LOGICAL ARCHITECTURE DIAGRAM ... 114

APPENDIX E GATEKEEPER SPACES .. 115

APPENDIX F GLOSSARY .. 116

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 7

List of tables
TABLE 1: CORE VOCABULARY OF THING DESCRIPTION [11] ... 19

TABLE 2: COMPONENTS LIST OVERVIEW ... 46

TABLE 3 - AI/ML RESEARCH HYPOTHESES WITHIN GATEKEEPER .. 67

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 8

List of figures
FIGURE 1 - GATEKEEPER LAYERED ARCHITECTURE ... 11

FIGURE 2 - WEB OF THINGS MODEL [8] .. 15

FIGURE 3 - FROM BINDING TEMPLATES TO PROTOCOL BINDINGS [9] ... 15

FIGURE 4 - GATEKEEPER ACTORS .. 25

FIGURE 5 - THING REGISTRATION IN THE GTA... 27

FIGURE 6 - CONSUMING A THING .. 27

FIGURE 7 –GATEKEEPER ARCHITECTURE VIEW - BUSINESS AND TRANSACTION SPACES 30

FIGURE 8 –GATEKEEPER ARCHITECTURE VIEW – CONSUMER AND HEALTHCARE SPACES 31

FIGURE 9 - CONTAINER PLATFORM FULL STACK ... 32

FIGURE 10 – GATEKEEPER PLATFORM REFERENCE DEPLOYMENT MODEL .. 34

FIGURE 11 - GATEKEEPER INFORMATION MODEL .. 36

FIGURE 12 - GK HEALTH INFORMATION MODEL ... 39

FIGURE 13 - CONCEPTUAL DIAGRAM OF THE GATEKEEPER THINGS MANAGEMENT SYSTEM............ 46

FIGURE 14 - GATEKEEPER THINGS MANAGEMENT SYSTEM INNER ARCHITECTURE. 47

FIGURE 15 - BIG DATA PLATFORM ARCHITECTURE .. 51

FIGURE 16 - THE GATEKEEPER AI REASONING FRAMEWORK. ... 70

FIGURE 17 - CONCEPTUAL COMPONENT OVERVIEW .. 71

FIGURE 18 - HIGH LEVEL UML DOMAIN MODEL .. 114

FIGURE 19 – GATEKEEPER SPACES AND STAKEHOLDERS .. 115

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 9

Introduction
Starting from the technical requirements collected in T3.1 [1], informed by user
requirements collected in T2.3 [3], together with the plans of the pilots to use the
platform identified in T6.2 [2], and the components descriptions of WP4 and WP5, this
deliverable aims to define the overall GATEKEEPER reference architecture, describing
the components and services that build the platform, their role and their
interconnections.

According to the phased approach adopted in the project and described in the DoA
(section 1.3.2, GATEKEEPER journey), the GATEKEEPER platform architecture definition
will follow an incremental approach. In this first version, the main goal is to detail the
underlying principles the platform has to follow, identify and describe the base
functionalities of the components building the platform, and ensure that they, together,
satisfy the requirements defined so far.

This version of the architecture will inform and guide the release of the platform
components and, as the project results are consolidated and initial feedback is received
from the pilots, the platform architecture will be updated to reflecting the status of the
developments and satisfy the emerging requirements. A second and final version of this
deliverable will be released at M18 of the project, in March 2021.

The results of the activities described in this deliverable have been organized following
the structure below:

Section I – Is focused on the driver principles that define the general approach in
designing the GATEKEEPER system architecture and its leading architectural
specification, the Web of Things approach.

Section II - Aims at defining the logical hierarchical structure of the infrastructure
components, the role of each of these system components, the relationships between
them and how they interact with one another, where the key components reside, where
data are stored and how can they be retrieved. In order to achieve such objective, logical
and deployment architectures are described, which offer (i) a clear understanding of the
main data flow among components (logical architecture) and (ii) a clear representation of
the software components and their relationships (deployment architecture). Such
architectures will offer the general framework to supervise the design and
implementation done in WP4 and WP5 to ensure the compliance of components and to
smooth the component integration.

Section III - Explains the information model which captures the unified data model for all
the information generated and processed within the GATEKEEPER system. The identified
model will serve as the basis for realizing the requirements and goals for the rest of the
architecture and design of the various components and will take care to guarantee the
syntactic interoperability. An initial model for the health-related measures that will be
managed by the platform (whose definition and formalization is the goal of the joint work
of T3.4 and T3.5) is also given. Insights about the main adopted standards are provided as
well in this part of the document.

Section IV - In this part the main functional components, implementing the
GATEKEEPER services are identified and their functionalities described in terms of
offered and required programmatic interfaces (i.e. APIs). Such functionalities are
identified gathering information from the component providers and identifying sequence
diagrams of interactions with other components associated to the project requirements
(see next section).

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 10

Section V - In this section, finally, are analysed the sequence diagrams of platform
behaviours, gathered from the “user stories” extracted from D6.2 and mapped to the
specific functionalities of the GATEKEEPER platform, or describing core functionalities of
the platform (user management, data management), with the purpose to identify which
GATEKEEPER components are involved and the type of interactions among them. This
work has been carried out in close collaboration with pilot owners and component
providers, and in conjunction with T3.1, mapping functionalities with a first set of platform
requirements.

Appendix A - Provides a table summarizing the mapping between the project's User
Stories to the platform interactions of Section V. User Stories related to GK Pilot UCs
have been identified by analysing D6.2 deliverable [2].

Appendix B - Provides a table mapping the platform requirements from D3.1 [1] to the
platform interactions of Section V. As D3.1 is due later in the project timeline, for this work
we used a draft of the document.

Appendix C - Provides an overview table of all components interactions and the
components involved in each of them.

Appendix D - Shows a UML design document produced by analysing DoA description
which laid the basis for the work of definition of the platform architecture and was
refined along with the partners during T3.2 work.

Finally, Appendix E - Reports the description of GATEKEEPER spaces referenced in this
deliverable as defined in the DOA.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 11

1 Architecture definition principles
This document describes the GATEKEEPER reference architecture. The main goal is to
help the platform component owners to collaborate effectively, having a coherent view
of the platform as a whole, a detailed description of the main components needed for
the implementation of the GATEKEEPER platform and the interaction expected between
these components to satisfy the requirements coming from Technical Requirements
(T3.1), as well as Pilots (WP6), and other user requirements (WP2). In this first section we
describe the defining principles that drive the design of the GATEKEEPER Platform, we
introduce the stakeholders of the platform, and then we give an overview of the target
cloud infrastructure, as well as security and privacy concerns.

1.1 Web of Things
GATEKEEPER platform will be based on the Web of Thing (WoT) layered architecture
described in [4]. The main difference between the GATEKEEPER layered architecture
and the WoT layered architecture relies on the inclusion of an additional layer that is
devoted to the implementation of governance rules for the platform that are applied to a
“GATEKEEPER Thing” through the release of a certification (Figure 1).

Figure 1 - GATEKEEPER layered architecture

The different sets of policies are associated with a different kind of digital certificate, and
when a Thing obtains a specific certificate from the GATEKEEPER Trust Authority (GTA),
it means that this Thing is compliant with the policies associated with the certificate.

Within GTA the policies will be in line to a common set of features that are related to:

- Data access compliance with current regulation (e. g. GDPR compliance);

- Alignment of data to the GATEKEEPER semantic models;

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 12

- Compliance with standards (mainly Web of Things and FHIR [14]);

- Quality of provided data and/or services.

1.1.1 Principles for GATEKEEPER data

The main objective behind the data governance inside the GATEKEEPER platform is the
enhancement of data economy, in order to provide solutions for data interoperability
and re-use in machine learning (ML) and artificial intelligence (AI) algorithms. This is
achieved by ensuring data quality, protection, privacy and security.

In order to reach this objective, several principles will be followed for GATEKEEPER data:

1. Compliance with Findable, Accessible, Interoperable Reusable (FAIR) principles.

2. Open data as possible, and closed as necessary. GATEKEEPER will always provide
access to data whenever possible;

3. Clear separation between data owner and data provider. Within GATEKEEPER, data
will be treated as Things (digital twin of the data). So, interfaces in order to access
data should be defined as APIs. This means that the data provider should agree with
the data owner (e. g. physical database owner) on how and which subset of the data
should be made publicly available and/or which kind of restricted access should be
implemented.

4. Balancing the flow and wide use of data, while preserving high privacy, security,
safety and ethical standards. These features should be provided by data providers
and GATEKEEPER will be able to certify its accomplishment through the Certification
Authority (GTA).

5. Allow the free flow of non-personal data, GATEKEEPER will treat in a high permissive
way non-personal and non- sensitive data. Less or no certification will be needed in
order to include these datasets as Things within the platform.

6. Provide rules for access to and use of data should be fair, practical and clear, with
clear and trustworthy data governance mechanisms in place; for an open, but
assertive approach to international data flows, data should flow within the EU and
across sectors.

7. Allow infrastructures that should support the creation of data pools enabling Big
Data analytics and machine learning, in a manner compliant with data protection
legislation and competition law, allowing the emergence of data-driven ecosystems.

8. Create an Artificial Intelligence ecosystems based on the concept of GATEKEEPER
data space that will contribute to the HealthCare Data Space foreseen at the
European level, with the objective of providing services (WP5) for early prevention
and intervention in 7 Medical Reference Use Cases (RUCs defined in WP6) in order to
improve the accessibility, effectiveness and sustainability of the healthcare systems.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 13

1.1.2 GATEKEEPER Web of Thing based architecture

1.1.2.1 Description of the layered structure

The proposed structure of GATEKEEPER Web of Things Platform architecture [5] will be
framed into a layered structure composed of: Access, Certify, Find, Share, Compose
layers as already shown in Figure 1.

Layer 1: Access, provide Accessibility of FAIR principle: This layer is responsible for
turning any Thing into a Web Thing that can be interacted with using HTTP requests just
like any other resource on the Web. A Web Thing is a REST API [15] that allows the
interaction with software services, or something in the physical realm, like opening a
door or reading a sensor located somewhere in the world. In GATEKEEPER this layer is
provided by the Things Management System. The Things Management System (TMS) is
one of the core components dedicated to the implementation of the functionality of
access and find associated with the access and find layer of WoT architecture. The TMS
is like a broker service that publishes the GATEKEEPER Things. Each Thing is decorated
with a Web of Thing Description that is available through a web-based service. Within
the TMS, the level of trustiness between the Things that are already connected to the
platform is automatically managed. The interaction between different Things using
Thing Descriptions is defined through a Web of Things (WoT) interaction model. The
Thing Description enables: (i) management of multiple Things by a cloud service, (ii)
simulation of devices/Things that have not yet been developed, (iii) common
applications across devices from different manufacturers that share a common Thing
model, and (iv) combining multiple models into a Thing. In the next sections, the Web of
Things model will be presented to show the interaction model and architecture of the
Web of Things platform.

Layer 2: Certify, improve the FAIR principles with Trustability: This layer is specific to
the GATEKEEPER platform, with respect to the Web of Thing layered reference
architecture. It is dedicated to build the concept of trustiness in the GATEKEEPER
platform through certification and a way to securely share data across services. A
GATEKEEPER Thing is different against a standard Thing because it has been certified by
the GATEKEEPER Trust Authority (GTA). Within the GATEKEEPER architecture the certify
layer is enabled through the interaction between the Things Management System (TMS)
and the GATEKEEPER Trust Authority (GTA). GATEKEEPER Trust Authority will provide
the Certify layer of the GATEKEEPER architecture, while the GATEKEEPER MarketService
will be in charge of sharing the GATEKEEPER Things. The Trust creation will be managed
using Blockchain technology [16] with the aim of having a decentralized trust system. As
a decentralized system, it removes the requirement for a trusted third party by allowing
participants to verify data correctness and ensure its immutability. Things can use
Blockchains to register themselves and organize, store, and share streams of data
effectively and reliably.

Layer 3: Find, provide Findability of FAIR principle: Giving accessibility via HTTP to
Things is a good option but it does not mean applications data or services can be easily
offered and/or consumed. This layer is dedicated at providing ways for easy discovery
and consuming of Things. In GATEKEEPER it will be implemented through a Marketplace
that will provide Things offered through the consumer space, the healthcare space and
the business space. Each space is oriented to a different type of market user. These core
features will be supported by the Networked Things architecture that will provide the
reference model in home and health-oriented devices forming the GATEKEEPER
Platform’s Business Space. The ecosystem will be split into clear boundaries around 3
spaces, Business-to-Government (B2G), Business-to-Consumer (B2C) and Business-to-
Business (B2B).

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 14

Layer 4: Share, provide Interoperability of FAIR principle: This layer will provide
functionalities by which someone can really “understand” what a Thing is, what data or
services it offers, and so on. Through these functionalities a Thing can not only be easily
used by other HTTP clients but can also be findable and automatically usable by other
WoT applications [6][7]. The approach here is to reuse Web semantic web standards to
describe Things and their services. This enables searching for Things through search
engines and other Web indexes as well as the automatic generation of user interfaces or
tools to interact with Things. At this level, technologies such as JSON-LD (a language for
semantically annotating JSON) are in use. In GATEKEEPER, all the Things will use as
communication language the Web of Things standard with JSON-LD contexts, including
FHIR standard and SAREF ontology [17].

Layer 5: Compose, provide Reusability of FAIR principle: This layer provides the
integration of data and services from heterogeneous Things into an immense ecosystem
of tools such as analytics software, mash-up platforms and developer platforms. Within
GATEKEEPER the compose layer will provide all the intelligent services for early
detection and intervention and a developer platform where developers can compose
GATEKEEPER Things in order to provide advanced services.

All the data pushed from the Things that compounds the ecosystem to the platform will
be used by the integrated Intervention Services of the GATEKEEPER Platform, which will
aim to create diagnostic and prognostic algorithms, to help not only clinicians and
domain experts to support their decisions but also predictive and proactive services to
help elderly people at home and in their communities.

In order to build these services, techniques such as big data analysis or artificial
intelligence will be of particular importance given the wide range of possibilities they
provide. For instance, retrieving multiple datasets from multiple wearable devices could
be used to accurately predict possible life threatening diseases such as stroke or heart
attack, thus helping to provide efficient fast assistance.

These early detection, prediction and proactive services for healthcare will be validated
in the pilot sites in order to populate the Consumer and Healthcare spaces within the
GATEKEEPER Marketplace where these services will be available as Things to third party
users in order to compose more advanced services through the open calls.

1.1.2.2 Web of Things (WoT) interaction model

Special mention must be given to the Web of Things interaction model which is
intimately related to the access layer and the Things Management System (TMS). The
Object model is used by the TMS and GTA, and it is composed of three layers: Binding
Templates, protocol bindings, and protocol stacks. This model would be an architecture
for the interconnection of the different layers of the Web of Things, integrating those
Things to the Web and in particular to HTTP, WebSocket, JSON and JSON-LD, using
TLS, DTLS, and/or OAuth to authenticate requests. Four main areas are considered
inside the Web of Things interaction model: Protocols, Resources and Data Model and
Semantic Extensions. As seen in Figure 2, the TMS model follows a structured and
layered architecture where from the communication protocol, we move onto the TD,
then to the contextualized TD and the semantic Web distribution.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 15

Figure 2 - Web of Things model [8]

Binding Templates are a reusable collection of templates used in communication with
other platforms. These templates are mapped together with the Protocol Bindings to be
used by the Protocol Stack as a guideline for implementation of the Web Services in
HTTP, WebSocket, and CoAP, with JSON and JSON-LD as data-interchange format
(Figure 3).

In a large-scale way such as intended with the GATEKEEPER Platform, Things pushing
data to the Web can only happen if the data can be efficiently—and securely—shared
across services. This layer specifies how devices and software services and their
resources must be secured so that they can only be accessed by authorized users and
applications. For that purpose, Things are internally configured in a way that it is divided
into different layers with the implementation, definition and communication, through
binding templates.

Figure 3 - From Binding Templates to Protocol Bindings [9]

1.1.3 Role of WoT Thing Description

The Thing Description (TD) is one of the key aspects of the WoT architecture and data
models. It allows Things to be defined, communicate with each other and expose
information. In essence, the Web of Thing Description is the entry point of a Thing, and
the Thing Description of the TMS is the point of access to the GATEKEEPER ecosystem.
It can be understood as the nucleus of the Thing since it provides the functionality of the
interconnectivity to the Thing. A Thing Description consists of four components: (i) textual
metadata about the Thing itself; (ii) a set of Interaction Affordances that indicate how the

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 16

Thing can be used; (iii) schemas for the data exchanged with the Thing for machine-
understandability, and, (iv) Web links to express any formal or informal relation to other
Things or documents on the Web.

An example of a WoT TD is shown in Example 1. Note that in general, the TD provides
metadata for different Protocol Bindings identified by URI schemes and security
mechanisms (for authentication, authorization, confidentiality, etc.)

Example 1: Temperature Event with subscription and cancellation. Extracted from [11]

{
 "@context": "https://www.w3.org/2019/wot/td/v1",
 "id": "urn:dev:ops:32473-Thing-1234",
 "title": "WebhookThing",
 "description": "Webhook-based Event with subscription and unsubscribe
form.",
 "securityDefinitions": {"nosec_sc": {"scheme": "nosec"}},
 "security": ["nosec_sc"],
 "events": {
 "temperature": {
 "description": "Provides periodic temperature value updates.",
 "subscription": {
 "type": "object",
 "properties": {
 "callbackURL": {
 "type": "string",
 "format": "uri",
 "description": "unsubscriber for Webhook.",
 "writeOnly": true
 },
 "subscriptionID": {
 "type": "string",
 "description": "Unique subscription ID for
cancellation",
 "readOnly": true
 }
 }
 },
 "data": {
 "type": "number",
 "description": "Latest temperature value"
 },
 "cancellation": {
 "type": "object",
 "properties": {
 "subscriptionID": {
 "type": "integer",
 "description": "Required to cancel subscription.",
 "writeOnly": true
 }
 }
 },
 "uriVariables": {
 "subscriptionID": { "type": "string" }
 },
 "forms": [
 {
 "op": "subscribeevent",

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 17

 "href":
"http://192.168.0.124:8080/events/temp/subscribe",
 "contentType": "application/json",
 "htv:methodName": "POST"
 },
 {
 "op": "unsubscribeevent",
 "href":
"http://192.168.0.124:8080/events/temp/{subID}",
 "htv:methodName": "DELETE"
 }
]
 }
 }
}

In Example 1, a Thing Description is shown to represent a Webhook event. The context
definition in this case has included HTTP protocol bindings supplements. The TD doesn’t
have security as defined in “securityDefinitions” and “security” fields. The TD provides an
Event affordance called “temperature” that updates its latest temperature value to the
consumer. It sends a POST request to a callback URI that is provided by the consumer.
The “subscription” defines two properties, one is a write-only parameter called
“callbackURL” that must be submitted through the subscribeevent. The other property,
“subscriptionID” is read-only and returned by the subscription. In case of subscription the
Thing would send periodically its state through a POST to the callback URI using “data”
form defined structure. To unsubscribe, the “unsubscribeevent” form must be submitted,
this form makes use of a URI Template to specify the subscription to cancel. The
uriVariables member functions as a note to the consumer to include its contents.
Alternatively, the member “cancellation” can be used to unsubscribe in a similar way to
“subscription” and combine it with a subscribeevent form.

For the Thing Description the use of JSON-LD is crucial as it is a lightweight Linked Data
format for linking data with vocabularies that describe the semantic of the data. Another
important aspect of the JSON-LD data format is its human readability. It is based on the
already existing JSON format and provides a way to help JSON data interoperate at
Web-scale through the concept of context. JSON-LD is an ideal data format for
programming environments, REST Web services, and unstructured databases such as
CouchDB and MongoDB, although it also gives very useful functionalities to Web of
Things. A simple example of a JSON-LD is shown in Example 2. The use of the contexts
allows JSON-LD to map data.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 18

Example 2: Example of a JSON-LD. Extracted from [10]

{
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}

Example 2 shows a simple JSON-LD where the context links the data structure of the

JSON with the concept of Person of the ontology Friend of a Friend (FoaF1) described in

the URI https://json-ld.org/contexts/person.jsonld. Based on such context the terms

"Name", "born" and "spouse" have a clear semantic meaning and can be understood by

machine and humans.

The vocabulary of the Thing Description is divided into: core, data schema, WoT security

and Hypermedia Controls vocabularies. The interaction models between Things,

conceptual basis of the processing of Thing Descriptions and their serialization.

The Thing Description information [11] model is built in:

 Core vocabulary, which reflects the Interaction Model with the Properties, Actions,
and Events Interaction Affordances.

 Data Schema vocabulary, including (a subset of) the terms defined by JSON
Schema.

 WoT Security vocabulary, identifying security mechanisms and requirements for
their configuration.

 Hypermedia Controls vocabulary, encoding the main principles of RESTful
communication using Web links and forms.

The vocabularies introduced before are the main parts of the TD information model,

then, the elements that put together all the Things, i.e. platforms, wearables, web

services. Therefore, they must be understood in order to create a framework based on

this paradigm.

A Thing defined as a Thing Description includes the following properties fields: context,

type, id, title, description, properties, actions, events, forms, security and security

1
 http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 19

definitions, among others. In Table 1, a compilation of all the fields that are included in

the Thing Description is shown.

Table 1: Core vocabulary of Thing Description [11]

Vocabulary

term

Description Assignmen

t

Type

@context JSON-LD keyword to define short-hand

names called terms that are used throughout

a TD document.

mandatory
anyURI or Array

@type JSON-LD keyword to label the object with

semantic tags (or types).

optional
string

Id Identifier of the Thing in form of a URI

RFC3986
2
 (e.g., stable URI, temporary and

mutable URI, URI with local IP address, URN,

etc.).

optional
anyURI

Title Provides a human-readable title (e.g., display a

text for UI representation) based on a default

language.

mandatory
String

titles Provides multi-language human-readable

titles (e.g., display a text for UI representation

in different languages).

optional
MultiLanguage

description Provides additional (human-readable)

information based on a default language.

optional
string

description

s

Can be used to support (human-readable)

information in different languages.

optional
MultiLanguage

version Provides version information. optional
VersionInfo

created Provides information when the TD instance

was created.

optional
dateTime

modified Provides information when the TD instance

was last modified.

optional
dateTime

support Provides information about the TD maintainer

as URI scheme (e.g., mailto RFC6068
3
, tel

RFC3966
4
, https).

optional
anyURI

2
 Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet

Standard. URL: https://tools.ietf.org/html/rfc3986

3
 The 'mailto' URI Scheme. M. Duerst; L. Masinter; J. Zawinski. IETF. October 2010. Proposed Standard. URL:

https://tools.ietf.org/html/rfc6068

4
 The tel URI for Telephone Numbers. H. Schulzrinne. IETF. December 2004. Proposed Standard. URL:

https://tools.ietf.org/html/rfc3966

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 20

Vocabulary

term

Description Assignmen

t

Type

Base Define the base URI that is used for all relative

URI references throughout a TD document. In

TD instances, all relative URIs are resolved

relative to the base URI using the algorithm

defined in RFC3986.

Base does not affect the URIs used in

@context and the IRIs used within Linked

Data
5
 graphs that are relevant when semantic

processing is applied to TD instances.

optional
anyURI

properties All Property-based Interaction Affordances of

the Thing.

optional
Map of

PropertyAffordan
ce

actions All Action-based Interaction Affordances of

the Thing.

optional
Map of

ActionAffordance

events All Event-based Interaction Affordances of the

Thing.

optional
Map of
EventAffordance

Links Provides Web links to arbitrary resources that

relate to the specified Thing Description.

optional
Array of Link

forms Set of form hypermedia controls that describe

how an operation can be performed. Forms

are serializations of Protocol Bindings. In this

version of TD, all operations that can be

described at the Thing level are concerning

how to interact with the Thing's Properties

collectively at once.

optional
Array of Form

security Set of security definition names, chosen from

those defined in securityDefinitions. These

must all be satisfied for access to resources.

mandatory
string

or Array of string

securityDefi

nitions

Set of named security configurations

(definitions only). Not actually applied unless

names are used in a security name-value pair.

mandatory
Map of
SecurityScheme

The Thing Description offers the possibility to add contextual definitions in some
namespace. This mechanism can be used to integrate additional semantics to the

5
 Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL:

https://www.w3.org/DesignIssues/LinkedData.html

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 21

content of the Thing Description instance, provided that formal knowledge, e.g., logic
rules for a specific domain of application, can be found under the given namespace. The
contextual information also specifies some configurations and behaviour of the
underlying communication protocols declared in the forms field.

Web of Things use of Thing Description is similar to OpenAPI [18] although there are
important differences.

 In terms of security, while the HTTP security schemes, Vocabulary, and syntax given
in this specification share many similarities with OpenAPI, they are not compatible,
making this a big challenge for harmonizing OpenAPI with Web of Thing.
GATEKEEPER project is addressing this challenge in T4.2.

 While OpenAPI is an open specification standard for exposing an API with a set of
rules, the Thing Description is a standard that is more general it allows to expose a
Thing, being understood as a device, service, platform or whatever.

 OpenAPI does not support semantic annotation while Web of Thing Description is
allowing the inclusion of contexts with JSON-LD that are used for describing the
semantic of the data within the Thing Description.

In the following sections we will present how two standards widely used in
GATEKEEPER domain can be used in a Thing Description.

1.1.4 Role of SAREF and relation with Thing Description

Similar to Thing Descriptions, SAREF [17] ontology would provide an object model that
describes the Things within the smart appliance domain. Smart Appliances REFerence
(SAREF) ontology is a shared model of consensus that facilitates the matching of existing
assets in the smart appliances’ domain. SAREF ontology provides building blocks that
allow separation and recombination of different parts of the ontology depending on
specific needs. This ontology has been used for the concept of device (e.g., a light
switch). Devices are physical objects designed to accomplish a particular task, in the
case of GATEKEEPER, medical devices or smart-home devices. The device may perform
one or more functions and for that reason, Thing Description must summarize and show
all of those functionalities in a human-machine readable way. For example, a medical
device that is designed to measure the pulse and oxygen in blood of a patient (tasks)
and to accomplish this task it performs the start and stop function. Then, the Thing
Description should provide those two functionalities to allow the interaction between the
platform and the device through Web of Things architecture. However, the Thing
Description might offer a list of other functionalities that can be eventually combined in
order to have more complex functions in a single device. Depending on the function(s) it
accomplishes, a device can be found in some corresponding states that are also listed
as building blocks. When connected to a network, a device offers a service, which is a
representation of a function to a network that makes the function discoverable,
registrable and remotely controllable by other devices in the network. A service can
represent one or more functions. A service is offered by a device that wants (a certain
set of) its function(s) to be discoverable, registrable, remotely controllable by other
devices in the network. A service must specify the device that is offering the service and
the function(s) to be represented. A device in the SAREF ontology is also characterized
by a profile that can be used to optimize some property, such as Energy, in a home or
office that are part of a building.

SAREF is domain-independent ontology; however, it provides building blocks that allow
recombination and separation of parts of the ontology depending on specific needs.
Therefore, SAREF is designed as a compound of simple core ontology patterns. Those
ontology patterns can be instantiated for multiple engineering-related verticals. There

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 22

are many extensions standardized to facilitate domain-specific modelling and
management like SAREF for Energy, for Environment and for smart cities. Each domain-
specific extension inherits and reuses parts of SAREF core concepts.

SAREF ontology is mainly focussed on device ontology, including sensors and actuators,
which focuses on functions and measurements given by devices [12]. Following is
presented an approach for the integration of SAREF ontology into Thing Description
through JSON-LD contexts.

Example 3: Example of a JSON-LD. Extracted from [13]

{
 "@context": [
 "https://www.w3.org/2019/wot/td/v1",
 {
 "saref": "http://uri.etsi.org/m2m/saref#",
 "OnOffState": "saref:OnOffState",
 "Light": "saref:Light"
 }
],
 "securityDefinitions":{
 "bearer_sc": {
 "in":"header",
 "scheme": "bearer",
 "format": "jwt",
 "alg": "ES256",
 "authorization": "/auth"
 }
 },
 "security": ["bearer_sc"],
 "@type": ["Thing", "Light"],
 "name": "Bathroom Light switch",
 "properties" : [{
 "on" : {
 "name" : "bathroom light",
 "@type" : ["Property", "OnOffState"],
 "inputType": { "type": "boolean" },
 "outputType": { "type": "boolean" },
 "forms": [
 {
 "op": "readproperty",
 "href": "/1/properties/on",
 "htv:methodName": "GET"
 },
 {
 "op": "writeproperty",
 "href": "/1/properties/on",
 "htv:methodName": "PUT"
 }
]
 }
 }
]
 }

This example describes the use of a SAREF ontology device in a Thing Description. In the
TD there are different fields to describe functionalities. For instance, each field is used

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 23

for defining the Thing in terms of security, properties, events, context, and more. For
example, properties are used to define the attributes of the Thing like lightStatus,
Intensity of Light, or others. In the specific case of the shown example in Example 3, the
Thing Description corresponds to a SAREF-defined device that is a bathroom light switch
which has only a boolean value that is on or off. As seen there, the light can be turned on
and off while assuring security through a JWT with algorithm ES256 for authentication.

1.1.5 Role of FHIR and relation with Thing Description

FHIR [14] will be a core concept within GATEKEEPER. It is a very mature standard
provided by HL7, commonly used in the healthcare domain around the world with a
wide community of developers and adopters. Details on FHIR will be provided in the
D3.4 and D3.5 but for understanding how it will be used within GATEKEEPER some basic
notions will be provided.

FHIR is a REST-ful based approach for modelling data structures as Healthcare
Resources and services as REST-APIs in order to provide a solution for health
interoperability. Furthermore, it addresses the semantic health interoperability between
healthcare centres providing a dynamic standardized approach for the definition of the
terminology used within a healthcare centre. In a very smart way, it is solving semantic
interoperability between different healthcare centres standardizing the rules that allow
terminology inconsistency between them. When an adopter would use FHIR it should
define a FHIR Profile Resource where is defined the health terminology (e. g. SNOMED-
CT6, ICD7, LOINC8, etc.) used by the adopter. In this way two different adopters will differ
at semantical level only in the definition of their profiles and interoperability could be
reached by mapping of the terminologies used in their Profile Resources. The definition
of a FHIR implementation guide and GATEKEEPER FHIR profiles will be the based for the
GATEKEEPER healthcare data space.

Apart of Profile resources, FHIR also provides Conformance Resource. This resource is a
description of the services (signatures, profiles, data exchanged, allowed parameters,
etc.) provided by each endpoint of the FHIR implementation.

In the context of GATEKEEPER, a FHIR Conformance Resource is the same of a Things
Description because it is describing the whole set of services included within the FHIR
implementation. So, we need to avoid an unnecessary overwriting of functionalities and
find a way that Thing Description and FHIR conformance resource can coexist within the
platform. In this case the solution for the integration of both approaches is to integrate a

6
 http://www.snomed.org/

7
 https://www.who.int/classifications/icd/en/

8
 https://loinc.org/

http://www.snomed.org/
https://www.who.int/classifications/icd/en/
https://loinc.org/

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 24

FHIR Conformance Resource within a Thing Description by linking the endpoint that is
providing the Conformance Resources as showed in the following example:

Example 4: FHIR Conformance Resource in the Thing Description

{
 "@context": [
 "https://www.w3.org/2019/wot/td/v1",
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "FHIRServer": {"@id": "td:Thing"},
 "conformance": {"@id": "xsd:anyURI"}
 }
],
 "@type":"FHIRServer",
 "title": "GATEKEEPER pilot x FHIR server",
 "description" : "A FHIR server implementation",
 "securityDefinitions": {
 "no_sec": {
 "scheme": "nosec"
 }
 },
 "security": [
 "no_sec"
],
 "conformance": "http://hapi.fhir.org/conformance?serverId=home_r4"
}

1.2 GATEKEEPER Stakeholders
This section aims at combining the analysis of D2.3 and the domain knowledge
expressed in D6.2, with a specific focus on GK stakeholders, to identify them and the role
they cover in the usage of the platform and of the solutions developed through the
platform itself. As this deliverable focuses on the GATEKEEPER Platform, we will focus
only in those stakeholders that have an active role in interacting with the platform, and
the Things registered to it. The actors identified and described here below are classified
based on the categories of: Business Space, Healthcare Space, and Consumer Space.
These categories, in fact, were already used in the DoA to point out the main affected
stakeholders and have been further analysed and specified in WP9. In this respect such
categories are associated to the actors’ survey here reported following the specification
produced in WP9 and available at the moment this document was written (which
excerpt is reported in Appendix E). A broader study of GATEKEEPER stakeholders will be
performed in WP2, where deliverable D2.1 will detail the GATEKEEPER economical
ecosystem sustaining the business model of the project. In that context, the list of
stakeholders will be broadened, classified and reordered framing them based on the
involvement they have in the platform strategy

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 25

Figure 4 - GATEKEEPER actors

BUSINESS ACTOR

Extends: GK Actor (Abstract)

Description: Generic actor of the Business Space. He/she is the provider of marketable
solutions that integrate with the GK platform

Concrete Implementers: Medtech Companies, Developers, IoT or HC Device providers

TECHNOLOGY DEVELOPER

Extends: Business Actor

Description: Develops solutions that exploit the existing GATEKEEPER services

Concrete Implementers: Solution developer

COMPANY

Extends: Business Actor

Description: Produces and markets health and wellbeing KETs

Concrete Implementers: Medtech Company

POLICY MAKER

Extends: GK Actor (Abstract)

Description: Administrator of the GK Platform. Manages the governance policies
regulating the platform in the Transaction Space

Concrete Implementers: Governments, HC Systems

HEALTHCARE PROFESSIONAL

Extends: GK Actor (Abstract)

Description: A Professional Caregiver is a person in the Healthcare and Consumer Space
who provide care to those who need supervision or assistance in illness or disability.
They use GATEKEEPER technology and solutions to assist person or citizen

Concrete Implementers: General Practitioner, Nurse, Pharmacist

CITIZEN

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 26

Extends: GK Actor (Abstract)

Description: Citizen represents people in the Healthcare and Consumer Space who
might be interested in the results of GATEKEEPER Interventions, directly (in the case of
patients) or indirectly (for Caregivers). They consume health services.

Concrete Implementers: Patients, Informal caregivers

PATIENT

Extends: Citizen

Description: A Patient is a person receiving or registered to receive medical treatment.
He/she is the owner of personal health and wellbeing data

Concrete Implementers: Elderly Citizen, Patients with co-morbidities.

CAREGIVER

Extends: Citizen

Description: Provides formal or informal care to one or more Elderly Citizens

Concrete Implementers: Assistant, Social Worker, Family Member

1.3 Security and Privacy considerations
The conceptual approach of the Security and Privacy module of GK follows the
principles of the Reference Model of International Data Space Association [19]. The
trustworthy Architecture focuses on exploiting and sharing Things from various sources
in any type of scenarios, including cross-border cases. The Security and Privacy
framework leverages existing standards, technologies and established governance
models, to facilitate secure and standardized data exchange and data linkage in trusted
ecosystems.

In detail, security and privacy considerations will be ensured by five main architectural
elements: a) the User management, b) the Certification Authority, c) the Dynamic
Attribute Provisioning Service, d) the Dynamic Trust Monitoring (DTM) and e) the Clearing
House (exposed as Thing).

The User management that manages authentication and authorization within the
platform based on rules.

The Certification Authority (CA) is responsible for issuing, validating and revoking digital
certificates. A digital certificate is provided for a user and a Thing based on the validation
mechanism. The Validation is implemented based on standardisation methods that will
be delivered by T8.1.

The Dynamic Attribute Provisioning Service (DAPS) includes master data and information
on security profiles. Since the CA provides the details on the digital certificate, the
participant registers at the DAPS. Then the User Management mechanism identifies the
validated users and authorizes the trusted users to access the GK platform. Furthermore,
the validated Things are delivered to the TMS system. DAPS is also responsible for the
management of dynamic consents and FAIRification Principles of Things.

Dynamic Trust Monitoring (DTM) is necessary for classification of the trustworthiness of
all participants in the ecosystem. DTM implements a monitoring function for everything
and shares information with the DAPS to notify on the trustworthiness of the
transactions. Furthermore, trails of all transactions related to Things, maintaining a
detailed history of the whole Thing lifecycle.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 27

The Clearing House logs all activities performed in the course of a data exchange. After
a data exchange, or parts of it, has been completed, both the data provider and the data
consumer confirm the data transfer by logging the details of the transaction at the
Clearing House. The logging information can also be used to resolve conflicts. The
Clearing House also provides reports on the performed (logged) transactions for billing,
conflict resolution, etc. This task is responsible for the adoption of FAIRification principles
after a Thing is consumed. Thus the Clearing House will be also exposed as a Thing and
delivered to the end-users of the GK platform.

In the following two diagrams the interactions of the GTA with the TMS component
appear for two use cases, (i) registering a new Thing (by a registered User), and (ii)
consuming a certified Thing (by a registered User). In these diagrams appear the
processes of User authentication (and authorisation), Thing certification, and (Immutable)
Logging of actions covering the security features of privacy, confidentiality,
accountability, and non-repudiation.

Figure 5 - Thing Registration in the GTA

Figure 6 - Consuming a Thing

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 28

1.3.1 Infrastructure security

In order to address security and privacy issues, the GATEKEEPER Data Centre
infrastructure, managed by HPE, adopt a number of technologies, products and services
here briefly reported (further details will be provided as output of T4.3 activity):

 VPN access, by means of OpenVPN open-source software. Two kinds of VPN
profiles are available:

o Road warrior, for GATEKEEPER partners users, supporting on-demand
connections from PC clients

o Site-to-site, for GATEKEEPER pilots, supporting always-on connections
from Pilot sites

 Support for different VPN access authentication types:

o Single Factor (user and password)

o Two Factor Authentication (2FA)

o Multi Factor Authentication (Client Certificate + Password + OTP)

 Firewall devices and policies. They are used to determine whether a given
user/pilot can access a network or a GATEKEEPER service

 Security services. They are managed by HPE and include:

o Identity Management: user identities to access services (e.g. VPN, servers,
VMs) are centrally managed by HPE

o Public Key Infrastructure (PKI): HPE manages an internal private
Certification Authority that releases digital certificates (e.g. for VPN user
access or internal web sites/services) and manages their lifecycle (e.g.
revocation)

o Intrusion Detection System (IDS): a service to block malicious attacks
based on security rulesets

o Proxy Server: access to the Internet from HPE Data Centre is controlled
and filtered via an HTTP Proxy Server

o Log Management: all devices (e.g. operating system, backup, switches,
firewalls, etc.) are traced, and logs are kept in a Log Management system
for security purposes

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 29

2 GATEKEEPER Architecture

2.1 Logical Architecture
This section highlights the context and role of GATEKEEPER platform by giving an
overview of the platform as a whole and the roles of the single components.

The following figures highlight the context of the GATEKEEPER platform by means of
functional views. Component colours highlight their role.

 Pink components represent Core Platform Things (from WP4): they are responsible
for providing the core services to the platform Things such as access to Things and
data, user management and data integration,

 Blue components are Integrated Dynamic Intervention Things (WP5): these are the
Things that expose the early detection, prediction and proactive services for
healthcare

 Yellow components represent External Things: that can interact with the platform
and respond to specific needs of Pilots or, in general, respond to specific application
requirements.

The solid arrows demonstrate the main flows of the significant data managed by the
Platform. The dashed arrows in the figures demonstrate the significant interactions of
actors that trigger the main data flows. For clarity, we split such flows to highlight the
ones that concern the Business and Transactions spaces (Figure 7) (see Appendix E) and
the ones that emerge from the use in the Consumer and Healthcare spaces (Figure 8). A
detailed description of the actors involved can be found in Section 1.2. The role of the
Platform components is described in more details below, but the flows can be
summarized in the following coarse-grained sequences:

1. The Policy Maker manages the platform by moderating the MarketService content
and managing the security and privacy policies in the Trust Authority (Transaction
space). Such policies regulate and define the access modalities to the Thing
ecosystem (see also sec. 1.3 for further details)

2. The Technology Developers integrate the services provided by GATEKEEPER Things
in customer solutions or develop new Things to be integrated in the platform.
Business actors (Developers, but also Companies) publish new offerings of Things in
the Marketplace, (Business space)

3. Sensor data produced along the execution of activities/exercises by the patient are
fed (collected in connectors or directly) to the platform together with data from
EHRs. Data are federated in the platform and processed by Dynamic Intervention
services. Data and results are visualized by Healthcare professionals and Patients
using the registered applications (Consumer and Healthcare spaces).

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 30

Figure 7 –GATEKEEPER Architecture view - Business and Transaction spaces

In all contexts of usage the Things Management System functions as the entry point of
the GATEKEEPER platform. It manages Things (devices, services, platform or other
assets to be operated as an individual elements) represented as Thing Descriptions,
following the Web of Things approach (Section 1.1). It keeps a registry of all Things
registered in the Platform in the Thing Directory and acts as an API Gateway mediating
any interaction between Things and their consumers using the access policies set by the
Trust Authority.

Such policies and usage rights are managed by the Policy Maker, who administers the
Platform ensuring laws and regulations are enforced by such policies and supervises
registered users and Things.

The Trust Authority is the component that is responsible to enforce all policies
regulating the access to the platform (that are enforced by the TMS) and act as a
Certification Authority for Things. It applies certification tests to the Things ensuring that
a Thing respects the rules of the different GATEKEEPER Thing profiles (medical device
certification, interoperability with standards, GDPR compliance, etc). The Trust Authority
also checks authorization rights for the access to services and data throughout the
platform. A detailed representation of the main interaction flow covered by this
component has been reported in Section 1.3.

The GATEKEEPER Marketplace is the single-entry point for all users to explore,
conceptualize, test and consume the added value services they are interested in. It will
allow a uniform access to the Things ecosystems and will achieve interoperability by
enabling service/application exchange between deployment sites, third parties, etc. For
developers in particular, it will provide a Developer Portal allowing to find development
and deployment material in order to publish applications and services. It will also deploy
applications/services to the cloud or on premise at ease.

Developers will be also supported by the Authoring Tool to build and integrate UI
dashboard targeting pilots’ needs.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 31

Figure 8 –GATEKEEPER Architecture view – Consumer and Healthcare spaces

Moving to the interactions affecting Consumer and Healthcare spaces (Figure 8), the
main data flow and components involvement will be here briefly summarized.

A Consumer or Healthcare space actor (e.g. Patient or Healthcare Professional) finds a
solution (a “Thing” in GK) by exploring the Marketplace core platform Thing. The
Marketplace retrieves the description of the requested Thing (TD from now on)
interacting with the Things Management System core platform Thing. In turn, the Things
Management System will interact with the GATEKEEPER Trust Authority core platform
Thing to get the detailed information about the requested Thing quality and certification
degree. Once accepted the usage conditions the actor starts using the Thing.

Health and environmental data that are processed by platform can come from data
connectors or devices provided by pilots or companies and are registered and certified
in the platform as Things, or even directly accessed from EHRs. GATEKEEPER Platform
already provides two types of connectors:

The Intelligent Medical Device Connector, that allows accessing device measurement
data regardless of their differences in interfaces or connection protocols, and
homogenizing their data format; the Multi robot connector, the connector that allows to
interact and get information from robots.

GATEKEEPER Data Federation is responsible to integrate and federate data coming
from the different sources. Different data acquisition modalities are supported: data can
be sent explicitly by the external data sources (i.e. connectors, devices, proprietary EHR
etc.) exploiting the REST interface provided by this Thing (southbound API). As
alternative, if properly configured, data can be periodically fetched directly from the
external data sources. Using semantic models, data are transformed in a unique format,
the GATEKEEPER FHIR Data Profile, and made available to the rest of the GATEKEEPER
Platform and all Things authorized to access them. It is worth to remember that being
Data Federation a Thing any interaction with it is mediated (as for all the GK Things) by
the TMS.

Data integrated in the data federation are also pushed to the Big Data Infrastructure,
where they can be further processed and merged with further external data sources.

The infrastructure will provide services to perform Big Data analysis and generic models
that can be exploited from the other services registered in the platform as Things.

In the platform will be also available two processing services: the AI Personalized Risk
Detection & Assessment, that will provide diagnostic and prognostic algorithms that can

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 32

help both professionals to support their decisions and elderly with no technical
knowledge to improve their independency and ability over the time; Home and Health
Activity Monitoring that can combine Personal Health Background and Environmental
Measurements, mapping of daily activities and environmental threats at home, to
identify and notify abnormal conditions.

2.2 Deployment Architecture
The deployment strategy of the platform will have to fulfil constraints and requirements
from Pilots. For this reason, a number of different deployment alternatives have been
identified. In the following paragraphs it is described at high level the Infrastructure
made available in the HPE Data Centre to host the GATEKEEPER reference architecture
(a work carried out and detailed in the context of T4.1), then we will describe the
reference deployment and finally alternative deployment strategies that can meet
different pilot constraints are discussed.

2.2.1 GATEKEEPER Cloud Infrastructure

The following figure represents the software layers of the platform provided by HPE:

Figure 9 - Container Platform Full Stack

The bottom layer represents the infrastructure where the platform will be installed: it will
be made of virtual nodes running on KVM (in principle the infrastructure nodes can
include bare metal machines, or cloud instances, or both, thus allowing for hybrid
deployments). The operating system will be RHEL or CentOS (CentOS will be preferred
since it is open source). Internally, the HPE platform uses Docker as core containerization
technology and Kubernetes for related orchestration. On top of the containerization
layer, there are resource management tools, responsible for administering physical
resources of nodes (CPU, RAM, storage) and obtain a complete abstraction of the
underlying infrastructure, which is presented as a homogenous resources pool to the
overlying layers.

The multitenancy level is responsible for segregating the resources pool into tenants.
Tenants can be defined at whatever level: in GATEKEEPER, tenants can be created for

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 33

each partner, or each use case, or whatever other entity. Resource quotas can limit the
resource usage for each tenant; Quality of Service is meant to tune the resource
allocation between tenants.

On top of this, the platform offers other high level functionalities: the capability to
connect to existing data lakes without moving data, and cluster management functions
allowing users to create new clusters, stop them, expand/contract them depending on
their needs, or create auto-sizing rules.

The Enterprise Data Services layer includes security services applied at container level:
authentication, authorization, encryption, TDE, TLS, and SSL.

The AppStore presents a number of reference applications available to users: they can
be used as they are, or they can be customized for specific requirements, e.g. using
Action Scripts technology.

Finally, users can access the HPE Container Platform in multiple ways: through a web UI,
or a command line interface, or REST APIs.

Further details on this Infrastructure will be reported in the context of Task 4.1.

The schema to deploy the GATEKEEPER functional blocks described above is shown in
the UML diagram of Figure 10. Such deployment diagram provides a high-level view of
the interactions between all components. The diagram reports the different deployment
locations involved, the deployed components and their provided and required
interfaces, drawing an overall picture of their relationships. The detailed description of
each component, and its related interfaces, are reported in Section 4, while the possible
interactions to implement the target functionalities are reported in Section 5.

The nodes can be of different types: <<platform>> node, which represents vertical
platform. If the platform is a cloud platform, it is noted as such, if it can be either local or
cloud, it is left unspecified. In the <<platform>> nodes, the assumption is that it will
provide containerization services (Docker, Kubernetes) relying on HPE cloud
infrastructure capabilities (see Section 2.2.1). All components will be deployed in such a
container, so, to improve readability, in the diagram this is not reflected. <<execution
environment>> nodes represent a software process providing the runtime for the
components, like Java Virtual Machine or Web Server. Each container can host, naturally,
one or more <<execution environments>>.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 34

2.2.2 Reference Deployment model

Figure 10 – GATEKEEPER platform reference deployment model

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 35

2.2.3 Deployment alternatives

2.2.3.1 GK Platform is deployed on GK Cloud

This is the reference choice of GATEKEEPER also reflected in the diagram of Figure 10.

All main components of the platform are hosted in GK cloud at HPE data centre in a
single reference tenant and connects to pilot sites to fetch data and provide results.
Security, updates and maintenance can be managed centrally ensuring the highest level
of service. In this case GATEKEEPER Platform will be responsible to ensure separation of
data and multitenancy.

2.2.3.2 Pilots own a private space on GK Cloud and share some data with GK
Platform

In case Pilots require to keep part of their data isolated from the other pilots, GK Cloud
can provide private storage spaces in dedicated private “pilot cloud tenants”, while the
GK Platform remain centralized. Pilot systems running in the separate spaces interact
with the Platform to exploit its services from within GK Cloud.

2.2.3.3 Pilots manage a private copy of the GK platform within GK Cloud
Infrastructure

To ensure a greater isolation, an alternative deployment implies the creation of
separated “pilot cloud tenants” within the HPE data centre, where replicas of the
GATEKEEPER platform are deployed separately (not only storage as in the solution
above). In this solution, maintenance of the GK Cloud becomes more complex.

2.2.3.4 Pilots install an instance of GK Platform on its own premise

In this solution the Pilot decides to install GK Platform locally in its own premises. This
implies that the Pilot will have to take care of the maintenance of the infrastructure and
performing the updates. GK Cloud will host testing and Integration environments for the
Platform. No data will be shared across pilots.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 36

3 Information Model
The Information Model shown in the diagrams below describes the main types of data
exchanged between the GATEKEEPER components.

The Information Model described focuses on two aspects: entities, and their
relationships, directly used as input and output parameters of the operations provided
by components (listed in section 4); an initial entity diagram that represents the Health
related measurements used by pilots, as gathered by the analysis of D6.2, that will be
the basis of the work of tasks 3.4 and 3.5 for the creation and formalization of a unified
GATEKEEPER semantic model.

Figure 11 - GATEKEEPER Information Model

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 37

The reported Information Model (Figure 11) focuses on data involved in the component
interactions defined so far in the project. The model will be continuously enriched with
new entities when the interfaces of the components will be further defined.

The main data type for this platform is the ThingDescription described in detail in section
1.1.3. It contains descriptions of all services and Things (sensors, Devices) that by invoking
their actions can produce or elaborate health data (Measurements) in the platform.

To regulate the access to the ThingDescription, and perform actions, the Trust Authority
links to the TD a set or authorized Roles. Roles are assigned to registered Users. Users
obtain AuthorizationTokens to prove their identities.

A Thing is referred in the MarketService by means of the Offering entity. This entity is the
representation of all added value services exposed by the GATEKEEPER Platform. When
an Offering describes a software service or device that can be connected to the GK
platform, it links to its ThingDescription.

The IntelligentMedicalDeviceConnectors Thing can manage Devices, representing sensors
that generate Measurements of patients’ status. Devices belong to Organizations. Devices
and their measurements can be accessed by Users with different Roles.

Measurements represent the Health data managed by the platform. They refer to
Measure types, of a variety of health-related aspects. An initial set of Measures obtained
by the analysis of Pilots is detailed in the next section.

All Measurements the platform manages are collected from connectors in a variety of
formats (the task dealing with the identification of such formats is T3.4) and being
translated in a homogeneous format to federate them and allow a homogeneous
access. The target format will be formalized in the GATEKEEPER FHIR profile, output of
T3.5.

Federated data can be visualized using the services of the AuthoringTool that uses
DashboardConfigs to customize views on the Measurements.

Data are also processed by Dynamic Intervention services that take as input
DataTrajectories and by the use of AI algorithms can produce Risk assessments or
Predicted Trajectories. Details on the input and output requirements for such services is
detailed in section 3.2.

3.1 Health Measures
Although details on the work of mapping input measures and their formats from pilots
and defining a unique GATEKEEPER FHIR profile that is able to represent them is a joint
work of T3.4 (for the concepts identification and mapping) and T3.5 (for the definition of
the FHIR profile), here we give an initial overview of health measure types that the
platform will manage.

Figure 12 show the result of the analysis of the list of measures required by pilots as
reported in D6.2. Measures that the GATEKEEPER platform will have to manage
comprehend Vital Signs (such as Body Temperature, ECG, Respiratory Rate), as well as
data on the patient Activity or other parameters as Glucose or Sweat level.

A specific value in time of a Measure is captured by the Measurement entity, which
describes a Measure, its value, the patient identifier and the time it was captured.

Measurements are first categorized based on the way they are captured. They can be
AuomaticMeasurements, produced by HealthEvents, or ManualMeasurements coming
from the QuestionnaireResponses of Questionnaires of self-assessment or interviews with
professionals.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 38

HealthEvents can be generated from Devices or be the result of the data processing of
Dynamic Intervention Services. In the latter case they are referred as Risk Events.

Questionnaires can cover a variety of topics, from Healthy Habits, to Cognitive
Impairment, Dependencies, Medications or Emotional Situation.

3.1.1 GATEKEEPER FHIR profile

A FHIR profile is a set of rules which allows a FHIR resource to be constrained or include
extensions so it can add additional attributes. T3.5 will take as input all the information
on relevant Resources to be included in the profile (output of T3.4), and formalize a
GATEKEEPER FHIR profile to ensure data will be semantically interoperable. The profile
will be based on v4 of FHIR [14].

The translation from the original format to the GK FHIR profile will be performed by the
GATEKEEPER federation component, which will also provide a FHIRv4 compliant
database to store the translated data and make them available for the rest of the
platform.

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 39

Figure 12 - GK Health Information Model

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 40

3.2 Data Structures arising from the Input-Output
Requirements of the AI/ML Models

AI/ML-based risk stratification and prevention models in GATEKEEPER, as they will be
specified in D6.3.1 and outlined in the description of the
AIPersonalizedRiskDetection&Assessment component herein (Section 0), feature a rigid
representation of their input (feature) and output spaces. The input space of each AI/ML
model encompasses the set of features upon which the AI/ML based function or
knowledge base is defined and learnt with respect to a research hypothesis, whereas
the output space, in the case of supervised ML problems, defines the set of output
variables.

An intermediate layer (southbound interface) between the GATEKEEPER Data
Federation Component and the AI Personalised Risk Detection and Assessment
Component shall provide, in both phases of training/validation and real-world
performance monitoring of the defined and specified models within the GATEKEEPER AI
Reasoning Framework, the needed data trajectories upon which each AI/ML model’s
feature / output space will be built. An additional intermediate layer (northbound
interface) shall be able to provide the representation of each built (trained) AI/ML model,
its internally validated performance, as well as each AI/ML model’s output (e.g. a vector
describing the predicted trajectory of an output variable over a specific prediction
interval , for a specific prediction horizon , or the probability of an event, or
the probability of each of the identified classes over a specific prediction horizon).

Herein, we specify the basic data structures required in the formation of the required
input/output data trajectories over a specified time interval (i.e. monitoring
period) given a specific individual, provided the sampling interval and ,
such that the associated training/validation datasets (in the training/validation phase) or
the defined feature vectors (in the real-world performance monitoring phase) can be
constructed. The undermentioned information will be refined as the definition and
specification of the AI/ML models within WP5 and WP6/T6.3 advances. More
specifically, both in the case of supervised learning – risk stratification models and
unsupervised learning tasks, the training and validation phases of model building
require: (i) the formation of synchronised multivariate input data trajectories for a specific
number of subjects, and, (ii) the formation of the time course of output variables
expressing disease-related symptoms or annotated events. Box 1 presents the process
of the construction of the input data trajectories as a function of a pilot study, a reference
use case (RUC) and an investigated research hypothesis; the aforementioned
parameters drive the selection of the sample of subjects and the related measures (e.g.
EHR data, vital signs, questionnaires). Hence, the basic AI/ML-related data class pertains
to the definition of the time course of measure over the time interval for

one individual : . Similarly, as it is shown in Box

2, the time course of each output variable is encapsulated within the vector .

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 41

Box 1 - Construction of the input data trajectories in the training/validation phase

Retrieval of the Input Data (Pilot study, RUC, Research Hypothesis)

1. For each individual
a. For each measure

i. Specify the data trajectory over a specified time interval (i.e. monitoring period) provided the sampling interval

and .
b. Specify the full data trajectory over the monitoring period

2. Construct the input dataset:

Box 2 - Construction of the output data trajectories in the training/validation phase

Retrieval of the Output Data (Pilot study, RUC, Research Hypothesis)

1. For each individual
a. Specify the data trajectory of the output variable over a specified time

interval (i.e. monitoring period) provided the sampling
interval and .

2. Construct the training output set:

During the real-world performance monitoring phase, the same input data structure (i.e. :) shall capture the time course of the measures

required to construct/instantiate the feature vector of each of the identified AI/ML
models subject to the history window pertaining to each of the measures (Box 3). This
formulation describes well the cases of supervised AI/ML models or unsupervised ones
defining a mapping from the input space to a feature space e.g. (clustering). On the other
hand, each AI/ML model’s output formulation in the real-world performance monitoring
phase depends on the specified research hypothesis and the output of the model per se.
Box 4 provides some indicative examples of model’s output formulation.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 42

Box 3 - Construction of the input data vector in the real-world performance monitoring
phase

Construction of the Input Data Vector (Pilot, RUC, Research Hypothesis, Individual)

1. For each measure
a. Specify the data trajectory over a specified time interval provided the sampling interval .

2. Specify the full data trajectory over a specified time interval

Box 4 Formulation of a model’s output in the real-world performance monitoring phase.

Formulation of AI/ML Model’s Output (Pilot, RUC, Research Hypothesis, Individual)

1. Output:
a. Vital Signals: Vector describing the predicted trajectory of the output

variable over a specific prediction interval , for a specific
prediction horizon .

b. Events: The probability of an event, or the probability of each of the
identified classes over a specific prediction horizon

c. Disease or Condition: The probability of a condition, or the probability of each of the identified classes over a specific prediction horizon

3.3 Standards
The definition and implementation of GK platform architecture will follow the project
approach of standardization by design, leveraging on existing and emerging open
standards.

As stated in the Section 1 of this deliverable, the main guiding standard for the
architecture is the Web of Things, with JSON-LD contexts and including FHIR standard
and SAREF. References to the intended use of these in GK platform have already been
provided in section 1.1.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 43

In addition to these, based on the analysis made in D8.1 that provides an exhaustive list
of standards applicable in the different domains that GATEKEEPER addresses, here
below we identify those specially relevant for the specification of the platform
architecture:

 EN ISO 12967-1:2011 Health informatics - Service architecture9

GK Platform is intended to be deployed in real healthcare settings, integrating,
and making available existing information assets, and most likely also making
possible the integration and interoperability of existing applications. This objective
can be realised with the help of this standard, which purpose is to:

o Identify a methodology to describe healthcare information systems
through a language, notation and paradigms suitable to facilitate the
planning, design and comparison of systems;

o Identify the fundamental architectural aspects enabling the openness,
integration and interoperability of healthcare information systems.

The architecture is therefore intended as a basis both for working with existing
systems and for the planning and construction of new systems.

Relevant to the work of GK platform architecture are the following characteristics
of this standard:

o The architecture is described according to the methodology of ISO/IEC
10746 to provide a formal, comprehensive and non-ambiguous
specification suitable to serve as a reference in the planning, design and
implementation of healthcare information systems. It is structured in three
parts that reflects the Enterprise viewpoint, Information viewpoint and
Computational viewpoint,

o The scope of the architecture comprises the support to the activities of
the healthcare organization as a whole, from the clinical, organizational
and managerial point of view. It therefore does not detail specificities of
different sub domains but provides overarching comprehensive
information and services framework to accommodate requirements.

o The architecture is intrinsically compatible, complementary and
synergistic with other models and standards, such as HL7 CDA, FHIR, ISO
1394010 (Contsys) and the Electronic Health Record Architecture ISO
1360611. Specific information objects and services are explicitly foreseen in

9
 https://www.iso.org/obp/ui#iso:std:iso:12967:en

10
 https://www.iso.org/obp/ui#iso:std:iso:13940:en

11
 https://www.iso.org/obp/ui#iso:std:iso:13606:en

https://www.iso.org/obp/ui#iso:std:iso:12967:en
https://www.iso.org/obp/ui#iso:std:iso:13940:en
https://www.iso.org/obp/ui#iso:std:iso:13606:en

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 44

the architecture to facilitate the implementation of views and
communication mechanisms based on such standards.

 ISO TR 12300:2014 Health informatics — Principles of mapping between
terminological systems:

Due to the need to accommodate existing infrastructures as well as to enable
interoperability across different data models, GK platform will include
components to facilitate mapping and connections between different
terminologies. This Technical Report provides guidance for organizations charged
with creating or applying maps to meet their business needs. It explains the risks
inherent in the mapping process and discusses the issues that need to be
considered in the development, maintenance, and use of maps in health care.
Importantly, this Technical Report establishes and harmonizes the basic
principles for developing, maintaining, and using maps and gives guidelines for
good practice that underpin the mapping process. Terminological resources
include terminologies, classifications, and code systems used in the regulatory
environment as it relates to healthcare and reporting requirements in healthcare.

 ISO/IEC 20547-3:2020 Information technology — Big data reference
architecture — Part 3: Reference architecture

This document specifies the big data reference architecture (BDRA) and includes
concepts and architectural views intended to:

o provide a common language for the various actors;

o encourage adherence to common standards, specifications, and patterns;

o provide consistency of implementation of technology to solve similar
problem sets;

o facilitate the understanding of the operational intricacies in big data;

o illustrate and understand the various big data components, processes, and
systems, in the context of an overall big data conceptual model;

o provide a technical reference for government departments, agencies and
other consumers to understand, discuss, categorize and compare big data
solutions; and

o facilitate the analysis of candidate standards for interoperability,
portability, reusability, and extendibility.

 ISO/IEC TR 23186:2018 Information technology — Cloud computing —
Framework of trust for processing of multi-sourced data

This document describes a framework of trust for the processing of multi-
sourced data that includes data use obligations and controls, data provenance,
chain of custody, security and immutable proof of compliance as elements of the
framework.

 ISO/IEC TR 10032:2003 Information technology — Reference Model of Data
Management

This Technical Report defines common terminology and concepts pertinent to all
data held within information systems. Such concepts are used to define more
specifically the services provided by particular data management components,
such as database management systems or data dictionary systems.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 45

 TLS Transport Layer Security

Transport Layer Security (TLS) are cryptographic protocols designed to provide
communications security over a computer network. The TLS protocol aims
primarily to provide privacy and data integrity between two or more
communicating computer applications.

 OAuth

OAuth is an open standard for access delegation, it provides to clients a "secure
delegated access" to server resources on behalf of a resource owner. It specifies
a process for resource owners to authorize third-party access to their server
resources without sharing their credentials. Designed specifically to work with
Hypertext Transfer Protocol (HTTP), OAuth essentially allows access tokens to be
issued to third-party clients by an authorization server, with the approval of the
resource owner. The third party then uses the access token to access the
protected resources hosted by the resource server.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 46

4 GATEKEEPER Components
In this document the components reported below are considered as black-boxes and, as
such, no information is reported about their internal architecture which is documented in
other deliverables. The following table provides a guide of the context where these
components are provided and thus documented.

Table 2: Components list overview

Component Name Responsible Task

 ThingsManagementSystem UPM 4.2

 ThingsDirectory UPM 4.2

 BigDataInfrastructureService HPE 4.3

GK-IntegrationEngine ENG 4.4

 GK-FHIRServer ENG 4.4

 GK-SemanticDataLake ENG 4.4

 TrustAuthority CERTH 4.5

 MarketService CERTH 4.6

 HealthActivityMonitoring SAMSUNG 5.2

AIPersonalizedRiskDetection&Assessment MYS 5.3

IntelligentMedicalDeviceConnectors MEDISANTE 5.4

AuthoringToolForDashboards TECNALIA 5.5

MultiRobotConnectors OU 5.6

4.1 ThingsManagementSystem
The Things Management System (TMS) is the entry point of the GATEKEEPER platform.
In analogy to classical micro-services architectures, it is like an API gateway component.

The TMS will not manage directly REST-API like a common API Gateway but it will
manage Things represented as Thing Description. A representation of this functionality is
shown in Figure 13, and it is based on the intermediary architecture described in the Web
of Things architecture specifications (https://www.w3.org/TR/wot-architecture/).

Figure 13 - Conceptual Diagram of the GATEKEEPER Things Management System

Things directory

https://www.w3.org/TR/wot-architecture/

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 47

The Things Management System is the intermediate in any interaction between Things
and consumers. We define Thing as any device, service or platform that is standardized
with a Thing Description and with a model of data to be operated as an individual
element derived from a set of predefined templates like smart light-bulbs, smart-
watches, AI service or marketplace analytics platform. In Figure 14 it can be seen the
initial inner architecture of Things Management System and its components. This
architecture will be updated and detailed in the next deliverable D4.2.

Figure 14 - GATEKEEPER Things Management System inner architecture.

In the architecture of the GATEKEEPER Things Management System, it can be identified
the following components:

• GTA: GATEKEEPER Trust Authority (T4.5), it manages authentication and authorization
of users in order to consume Things

• Thing Description (TD) – descriptor of the Thing compliant with WoT object model
and GK semantics (T3.3, T3.4).

• API - GW – Gateway for RESTful interfaces (or other protocols) of GK services

• Proxy: Redirect requests to different micro-services (only for REST interfaces)

• Builder: Interact with GTA for building and register new endpoints

• Thing Directory TMS – TD – Directory that collect all GK Thing Descriptions

• It is like a broker service that publish a directory of Thing Description of the
components available within the platform

• MSx: Microservice X providing service X as REST API associated to a logical Thing X

Two use cases have been described for the analysis of the components and
functionalities that must be considered for the definition of the interfaces: (i) registration
of a new Thing and (ii) normal use of the Thing.

Thing

Directory

DB

Service

GTA

MS1

MSn

Proxy

Endpoints Builder

Authorize

Register MS as Things

Expose

Register

Endpoints

Register Endpoints

Certify

MS

As a

Thing

API - GW

Manage Endpoints
Manage

the access

For clients

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 48

The first use case, which is shown in GKPLAT_02, represents the interaction between the
user and the platform for the registration and the first time usage of Thing. This use case
foresees a deep integration with the Trust Authority that will validate the Thing before its
first usage. The second use case is shown in GKPLAT_03, it describes how to use a Thing
that is already registered into the platform and the interaction with the Trust Authority in
order to be authenticated and authorized for its usage.

Also, the TMS is providing a Thing Description of its functionalities so in the interaction
the first step is always to ask the TMS for its Thing Description that will describe the
functionalities it provides.

Following are described the initial interfaces that the component should provide. Further
details and updates of such interfaces will be provided in D4.2 that will describe the first
version of the Things Management System.

ThingsManagementSystem Provided Interface

access() : anyURI

Ask to the TMS for the access to the Thing.

Input(s) --

Output thing:anyURI Thing Description of the TMS with security definition
(e. g. Bearer authentication)

registerForUser(String): anyURI

Register a Things for the user

Input(s) thing:String The serialized Thing (see section 1.1.3) to register

Output thing:anyURI Thing Description of the TMS with security definition
(e. g. Bearer authentication)

getTMSDescription(String): anyURI

Ask to the TMS for the Thing Description

Input(s) thingDescriptio
n: String

The serialized Thing (see section 1.1.3) to grant
access to

Output thing:anyURI Thing Description of the TMS with security definition
(e. g. Bearer authentication)

verifyUserCredentials(String, String) : String

Users send credentials for authentication

Input(s) username:Strin
g

Username

password:Strin
g

Password

Output jwt:String A JSON Web Token to allow the access to the
platform

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 49

discoverThing(String): anyURI

Request the list of Things to TMS

Input(s) thingDescriptio
n: String

The serialized Thing (see section 1.1.3)

Output thing:anyURI Thing Description

consumeTMS (thingID): anyURI

Request one Thing to TMS

Input(s) Thing ID The ID of the requested Thing

Output thing:anyURI Thing Description

ThingsManagementSystem Requested Interface

Provider Method Description Input Output

TrustAuthority

RegisterInGTA() Register a Thing
in the GTA

String

Thing Description

AnyURI: Thing
Description

verifyCredentialsI
nGTA ()

User sends
credentials for
authetication

String:
Username,
String: Password

String: Json Web
Token

Thing Directory

discoverThingInT
D()

Request the list
Things in Thing
Directory

String

Thing Description

AnyURI: Thing
Description

RegisterInThingDi
r()

Register a Thing
in the Thing
Directory

String

Thing Description

AnyURI: Thing
Description

consumeTD() Request one
Thing to Thing
Directory

Thing/<id> AnyURI: Thing

Description

Consume() Ask the new
created Thing to
the Thing
directory

String

Thing Description

AnyURI: Thing
Description

update() upload the
endpoint of the
Thing Description
to be accessed
by the gateway

String

Thing Description

AnyURI: Thing
Description

MSx ConsumeActionIn
MS()

Consume an
action on a Thing
in its Micro
Service.

Thing/<id>/actio
n

Object

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 50

4.2 ThingsDirectory
This component is the repository of Thing Descriptions. It is managed by the Things
management System. It acts like a broker service that publishes a directory of Thing
Descriptions of the components available within the GATEKEEPER platform.

ThingsDirectory Provided Interface

discoverThingInTD(String): anyUri

Request the list Things in Thing Directory

Input(s) String Filter

Output [anyUri] List of url of the selected Things

RegisterInThingDir()

Register a Thing in the Thing Directory

Input(s) string Thing Description

Output bool State of success

consumeTD()

Request one Thing to Thing Directory

Input(s) AnyURI ID of the Thing the consume

Output String The associated Thing Description

Insert()

Ask the new create Thing to the Thing directory

Input(s) Thing
Description

The Thing Description of the new Thing to insert

Output bool State of success

Update()

upload the endpoint of the Thing Description to be accessed by the gateway

Input AnyURI Thing ID of the Thing to modify

Input(s) string New Thing Description

Output bool State of success

Delete()

Delete a Thing from the Thing Directory

Input(s) AnyURI Thing ID of the Thing to modify

Output bool State of success

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 51

4.3 BigDataInfrastructureService
The Big Data Platform built by HPE offers the Big Data infrastructure services used by
GATEKEEPER.

The following diagram shows the main logic components included in the Big Data
Platform:

Figure 15 - Big Data Platform Architecture

In particular:

 Data Connectors are responsible for ingesting data from multiple sources:
GATEKEEPER components, external DBs, IoT devices, etc. Open-source
platforms like Apache NiFi allow automating ingestion flows, and support the
most common data types and protocols. In case of real time flows, Apache Kafka
allows to stream input data reliably, by means of publish/subscribe mechanisms.
Data preparation and transformation may happen before data is loaded (ETL), or
afterwards (ELT).

 The Data Lake embeds the storage systems where multiple data sets are
persisted, in different forms (structured, unstructured, and semi-structured). The
Data Platform takes advantage of components like HDFS and Operational data
stores (e.g. HBase) to persist and organize different data formats. Resource
management tools like Zookeeper are used to guarantee high availability and
fault tolerance of distributed storage systems.

 The Execution Engines allow to access, search and analyse in parallel big
volumes of data. Many execution engines allow SQL-like queries directly on
HDFS (like Apache Hive). The workloads generated by the execution engines can
in turn leverage resource management frameworks like YARN. At a higher level,
the execution engines include tools for processing RT/NRT data in streaming
mode (such as Flink or Spark streaming module) and for processing historical
data (Hive, Spark, Phoenix, etc.). In particular, Spark includes SQL-like query
modules (SparQL) and Machine Learning libraries (MLlib).

 Advanced Analytics functionalities are provided by data science frameworks and
ML/DL libraries and tools, like H2O, Knime, Scikit learn, R studio, etc.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 52

 Visualization and RT search block is meant to quickly access/show data or
insights. Sometimes it is useful to offer real time search capabilities to collect RT
information on new data (especially for monitoring purposes). Tools like
Elasticsearch or Solr are used for fast queries, and also index data in form of
documents which can be searched via full text search. Visualization capabilities
are important both for data exploration / descriptive analytics and for presenting
data insights: they are also provided by open source tools (e.g. Apache Superset
or Apache Zeppelin).

 Administration, Orchestration, and Data Governance. They are horizontal
functionalities required for the overall Data Platform: Cluster administration tools
allow managing instances/parameters of big data platform components, by
performing cluster maintenance, and monitoring all software and hardware
resources. In terms of data governance, Apache Atlas allows to centralize and
manage different types of metadata, share them with users, classify data in a
dynamic way, and manage and monitor data lineage. In terms of orchestration,
tools like Oozie are used to orchestrate big data workloads.

 Data Security. This layer is meant to address all the security aspects across the
Data Platform:

o Authentication. Data segregation through authentication is achieved using
Apache Kerberos. Authentication mechanisms can integrate with external
directory services such as LDAP or AD.

o Authorization:

 Permissions on file systems are enforced through ACLs. For
instance, in HDFS ACLs have a definition similar to POSIX for
regular Linux file systems.

 For authorizing services (e.g. the execution of a query), Apache
Ranger allows to define access policies for HDFS, Hive, HBase,
Kafka, Knox, YARN. A definition of fine-grained permission policies
is allowed: it is possible to define table-based or even column-
based policies for execution engines like Hive and HBase.

o Perimetral security. It is realized mainly through Apache Knox, which
provides a gateway to communicate in a secure way with REST API and
Hadoop user interfaces. Knox integrates with Kerberos and AD and
supports WebHDFS, Oozie, JDBC, Ranger UI and other protocols.

o Data encryption. To encrypt data at rest, on HDFS the AES-CTR (Advanced
Encryption Standard-Counter) algorithm is employed. To encrypt data in
motion, TLS will be always applied.

 Auditing. Apache Ranger allows to perform auditing in terms of access (e.g. a Hive
query launched by a user), Administration (e.g. update of a Hadoop parameter),
Login sessions, Plugin status.

BigDataInfrastructureService Provided Interface

As the infrastructure will be built on existing tools, the following interface refers to the
list of candidate tools that will provide the actual interfaces. The final list of such tools
will be decided in T4.3 and reported in the next version of the architecture.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 53

advancedAnalytics

ML/DL libraries and tools, like

 H2O (https://www.h2o.ai/)

 Knime (https://www.knime.com/)

 Scikit learn (https://scikit-learn.org/)

 R studio (https://rstudio.com/)

Queries tools like:

 Elasticsearch (https://www.elastic.co/)

 Solr (https://lucene.apache.org/solr/)

Visualization Tools:

 Apache Superset (https://superset.apache.org/)

 Apache Zeppelin (https://zeppelin.apache.org/)

4.4 GK-IntegrationEngine
The GK-Integration Engine is the component able to convert raw data, coming from
different data sources EHR, sensors, IoT devices, wearables etc.), to HL7/FHIR v4.0.1 and
RDF representation. Data can be sent to this component invoking the REST APIs that it
exposes. For IOT, it accepts as input data in the formats XML, JSON and CSV and
provides as output their representation in RDF. The rules for the transformation are
written with the language RML using the terminologies provided by the task T3.4.
Transformed data is sent to the component GK-SemanticDataLake.

For Electronic Health Records, it converts custom EHRs into FHIR v4.0.1 representation
according to the GK FHIR profiles defined in the task T3.5. Data can be sent to this
component invoking the REST APIs that it exposes. GK-IntegrationEngine accepts as
input data in the formats XML and JSON and provides as output their representation in
FHIR standard (JSON/FHIR). The terminology to be used for the conversion is provided
by the task 4.4. Finally transformed data is sent to the component GK-FHIRServer.

IGK-IntegrationEngine Provided Interface

create(pilot: String, sensorId: String, data: File): responseBody: String

Interface accepting data in XML/JSON/CSV format coming from IOT devices (or
connector services). If a FHIR processor has been preliminary registered for that
device/service, data will be converted and persisted in a FHIR R4 repository. The data
will be also converted in RDF and made available in to GK-SemanticDataLake
component. If the registered converter produces data compliant to other ontologies
(e.g. SAREF) then they will be loaded only in GK-SemanticDataLake repository.

In order to select the appropriate rules to be applied for the transformation, this
method accepts as input the name of the pilot, the id of the sensor and a file
contacting data. [POST method]

https://www.h2o.ai/
https://www.knime.com/
https://scikit-learn.org/
https://rstudio.com/
https://www.elastic.co/
https://lucene.apache.org/solr/
https://superset.apache.org/
https://zeppelin.apache.org/

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 54

Input(s) pilot: String The name of the pilot. Knowing the
name of the pilot this method can
apply the right transformation for
each pilot. Note that each pilot uses
a different data schema

sensorId: String The id of the sensor. The main goal
of this parameter is to select which
converter rules should be applied to
the data. The pair pilot+sensorId
allows to select the specific
transformation rules for the data

data: String Actual raw data that must be
transformed in RDF and sent to GK-
SemanticDataLake. The format of
the data can be JSON, XML and
CSV. In order to write the rules for
the conversion in RDF, it is necessary
to know the schema of
JSON,XML/CSV.

Output String data in the new format (XML or
JSON)

create(pilot: String, data: String): responseBody: String

Transforms data in FHIR representation and sends it to GK-FHIRServer component. It
returns the output of operation returned by the GK-FHIRServer together with the HTTP
codes describing the execution outcome.

This component defines and implements specific conversion rules for each type of
data of each use case. In order to select the appropriate rules to be applied for the
transformation, this method must know the name of the pilot to which data belong to.
[POST method]

Input(s) pilot: String The name of the pilot. Knowing the
name of the pilot this method can
apply the right transformation for
each pilot. Note that each pilot uses
a different data schema

data: String {json/xml} Actual raw data that must be
transformed and persisted in the
GK-FHIRServer. In order to perform
the rules for the transformation in
FHIR standard, the structures of the
data should be known.

The format of the data can be JSON
or XML. In order to write the rules for
the conversion in FHIR standard, it is
necessary to know the schema of
JSON/XML.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 55

Output responseBody: String Operation outcome returned by the
FHIRServer in JSON/XML format
together with the HTTP code that
provides feedback about execution
outcome.

GK-IntegrationEngine Requested Interface

Provider Method Description Input Output

GK-
SemanticDataLak
e

create(rdfData:
String):
HTTPResponse

Persist
transformed
data (RDF) into
GK-
SemanticDataLa
ke. POST

rdfData: String HTTPResponse

GK-FHIRServer

create (resource:
Bundle): Bundle

Send to the GK-
FHIRServer raw
data (belonging
to the pilot)
transformed in
FHIR standard. It
is required that
the GK-
FHIRServer
implement all the
operation
defined in the
FHIR standard.
https://hl7.org/F
HIR/http.html#o
perations. POST

resource: Bundle Bundle

4.5 GK-FHIRServer
The GK-FHIR-Server is a component implementing the HL7/FHIR v4.0.1 specification. It
provides all RESTful operations described by the standard. Refer to the specification for
more details: https://www.hl7.org/fhir/http.html.

This component has been developed relying on HAPI FHIR Library
(https://hl7.org/FHIR/index.html) that is an open-source implementation of the FHIR
specification in Java which defines model classes for every resource type and data type
defined by the standard.

Persisted data are translated in RDF format and sent to the component GK-
SemanticDataLake thought its REST APIs.

https://www.hl7.org/fhir/http.html
https://hl7.org/FHIR/index.html

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 56

IGK-FHIRServer Provided Interface

create(resourceType: String, resource: Resource): HTTPResponse

Create a new resource in a server-assigned location. POST method

Input(s) resourceType: String resource type of the resource to
create

resource: Resource FHIR Resource to create. The
resource does not need to have an
id element (this is one of the few
cases where a resource exists
without an id element). If an id is
provided, the server SHALL ignore it.

Output HTTPResponse The server returns a 201 Created
HTTP status code, and SHALL also
return a Location header which
contains the new Logical Id and
Version Id of the created resource
version

read(resourceType: String, id: String): resultBody: Resource

Read the current state of the resource. GET method

Input(s) resourceType: String resource type of the resource to
read

id: String id of Resource

Output resource: Resource {json/xml} Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

vread(resourceType: String, id: String, vid: String): resultBody: Resource

Read an individual resource instance given a version ID to retrieve a specific version of
that instance to vread that instance).

GET method

Input(s) resourceType: String resource type of the resource to
read

id: String id of resource

vid: String version ID to retrieve a specific
version of that instance (optional)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 57

Output resultBody: Resource
{json/xml}

Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

update(resourceType: String, id: String, resource: Resource): resultBody: Resource

Update an existing resource by its id (or create it if it is new)

PUT method

Input(s) resourceType: String resource type of the resource to
update

id: String id of resource

resource: Resource FHIR Resource to update

Output resultBody: Resource
{json/xml}

Resource returned by the GK-
FHIRServer with the content
specified for the resource type in
JSON/XML format together with the
HTTP code that provides feedback
about execution outcome

delete(resourceType: String id: String): HTTPResponse

Delete an individual instance of the resource.

DELETE method

Input(s) resourceType: String resource type of the resource to
delete

id: String id of Resource to delete

Output HTTPResponse Operation outcome returned by the
FHIRServer in JSON/XML format
together with the HTTP code that
provides feedback about execution
outcome

history(resourceType: String, [id: String]): responseBody: Bundle

Retrieve the update history for a particular resource type, or against a specific instance
of that resource type if an ID is specified. GET method

Input(s) resourceType: String resource type of the resource to
read

id: String (optional) id of Resource to read

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 58

Output responseBody: Bundle
{json/xml}

The return content is a Bundle with
type set to history containing the
specified version history, sorted with
oldest versions last, and including
deleted resources

search(resourceType: String, parameters: String[]): responseBody: Bundle

Search all resources of a particular type using the criteria represented in the
parameters. GET method

Input(s) resourceType: String resource type of the resource to
perform the search

parameters: String[] parameter of the search request

Output responseBody: Bundle
{json/xml}

The return content is a Bundle the
set of the resources fitting the input
parameters

IGK-FHIRServer Requested Interface

Provider Method Description Input Output

GK-
SemanticDataLak
e

create(rdfData:
String):
HTTPResponse

Persist RDF data
into GK-
SemanticDataLa
ke. POST

rdfData: String HTTPResponse

4.6 GK-SemanticDataLake
This component is an open source modular Java framework for working with RDF data.
This includes parsing, storing, inferencing and querying of/over such data. It offers an
easy-to-use API that can be connected to all leading RDF storage solutions. It allows you
to connect with SPARQL endpoints and create applications that leverage the power of
Linked Data and Semantic Web.

This server should be configured to be compliant to GATEKEEPER. For now, the only
REST operation that it is used is described in the following that allows to store RDF file.

GK-SemanticDataLake provided interface

create(rdfData: String): HTTPResponse

REST operation that allows to store RDF file – POST method

Input(s) rdfData: String RDF data to be persisted

Output HTTPResponse Http response of the requests

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 59

4.7 TrustAuthority
The “TrustAuthority” is the component that will be responsible for validating and
certifying the Things of the GATEKEEPER platform. It will apply validation tests to the
“Things” based on a predefined set of specifications that will ensure that a Thing
respects the rules of the different GATEKEEPER Thing profiles (medical device
certification, interoperability with standards, GDPR compliance) and levels of trustiness
will be calculated as a score. Besides, it will act as a Certification Authority (CA) able to
issue digital certificates, which will certify a Thing by giving it the appropriate attributes,
and by describing the ownership of a public key by the named subject of the certificate.
Furthermore, it will use a distributed ledger so as to keep an audit trail of all transactions
related to Things, thus maintaining a detailed history of the whole Thing lifecycle.
Furthermore, the ledger will track of operations performed on the available data, such as
creation, access, deletion and sharing among parties, without access to the actual
personal data due to security and regulatory compliance. This component will interact
with the “ThingsManagementSystem” to secure all transaction related to Thing lifecycle
when an external system (e.g. a User) is authenticated and allowed to perform actions to
a “Thing”.

TrustAuthority Provided Interface

authenticateUser(domain: string): string

This method will take as an input the domain used by the User in which the User has
valid credentials; this domain will be used for the credential validation during the
Single sign on mechanism to be used by the User Management module. This method
will interact with any GK component that will need to authenticate Users using the
User Management module of the GTA component (e.g. the Marketplace).

POST: /authenticateUser

Input(s) domain:string this is a string representing the domain to which the user
will be redirected by the User Management module, in
order to validate their credentials using the OAuth2.0
mechanism

Output authorisation_tok
en:string

this is a token provided by the User Management that will
contain encoded authorisation information about the
User based on their certificate issued by the GTA

registerThing(authorisation_token:string, thing:ThingDescription) file

This method will take as an input an authorisation token string that will contain
encoded authorisation information about the User, and a Thing Description (TD) object,
and after applying proper Validation of the Thing based on a set of predefined
standards, it will produce a validation score. This validation score will be linked with
levels of certification and corresponding permissions/roles. A certificate will be issued
for the Thing by the Certificate Authority having as an attribute this Validation Score.
This method will interact with the TMS.

POST: /registerThing

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 60

Input(s) authorisation_tok
en:string

this is an authorisation token string that will contain
encoded authorisation information about the User

thing:ThingDescri
ption

this is the object representing the device, application,
service etc. See Thing Description in the Information
Model

Output Thing
Certificate:file

this is the certificate file (probably in X.509 format) of the
Thing as provided by the GTA. It will contain the public
key for the Thing as well as the Validation score as
attribute of the Certificate

logAction(string:UserID, string:ThingID, string:ActionType, timestamp:Timestamp)

This method will take as an input a User ID, a Thing ID, and the Type of Action the User
wants to perform on the Thing (e.g. register, consume, etc.) and will log this triplet on
the ledger along with the timestamp of the action. This method will be called by the
TMS API for logging actions on Things and by the User Management Module for
logging actions of Users.

POST: /logAction

Input(s) userID this is the ID of the User as contained in the Thing
Description (TD) of the User

thingID this is the ID of the Thing as contained in the Thing
Description (TD) of the Thing

actionType this is the description of the Action the User wants to do
on a Thing (e.g. register, consume, etc.)

timeStamp this is the timestamp when the action was performed by
the User in the User Interface, e.g. the timestamp when
the User clicked the button to register a new service with
the GK Marketplace.)

4.8 MarketService
MarketService will provide a single-entry point for all users to explore, conceptualize,
test and consume the added value services they are interested in. This high-level
component will include several services and User Interaction (UI) interfaces in order to
make accessible to the interested users the Things belonging to the respected space.

The key goals of MarketService are:

 Unify platform/service ecosystems whether they have a marketplace or not;

 Achieving interoperability by enabling service/application exchange between
deployment sites, third parties, etc.;

 Find development and deployment material in order to publish apps/services;

 Deploy applications/services to the cloud or on premise at ease.

Its interface consists of 3 separate panels that offer multiple level of functionality and
include all of the operations of the MarketService.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 61

 END USER PORTAL OR MARKET:

End users will be able to log in, search, discover, download-register and review
offerings already available in MarketService.

 DEVELOPERS PORTAL:

Registered developers will be able to upload new offerings, edit and update
already listed ones, check reviews of end users to their offerings, find useful
development and deployment material.

 ADMINISTRATION PORTAL:

Administration portal is the central management console of the MarketService.
There administrators can locate information about transactions, reviews, offering
reports (abusive content etc...), inspect security checks for new and updated
offerings, grant access to new administrators.

UserMarketService provided Interface

downloadOffering(offeringID): string

Downloads or deploys a given offering

Input(s) Offering_id The id of the offering to download

Output url or outcome The url to download or the outcome of the deploy

login(user_creds): Auth_outcome

Performs the login of the user to the marketplace

Input(s) User_creds User credentials object

Output Auth_outcome Authentication outcome object

register(user_data): Auth_outcome

Registers a new user to the marketplace

Input(s) User_data Object of the user data

Output Auth_outcome Registration outcome object

elevateUser(user_id): Elevation_result

Elevates an end-user to developer

Input(s) User_id Identification number for the user to be elevated

Output Elevation_result Result of the elevation process

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 62

DeveloperMarketService Interface

createOffering(Offering): Validation

Create a new offering to be listed to the marketplace

Input(s) Offering_data An object with all the metadata of the offering

Output Validation The result of the validation process of the offering

4.9 HealthActivityMonitoring
HealthActivityMonitoring as a single software component for elderly, family and friends
and professionals for supporting independent living, remote monitoring and improving
quality of life. HealthActivityMonitoring has been developed as an open Internet of Things
(IoT) platform with semantics & ontologies for richer data interpretation and ML
facilitation, where homes have been equipped with non-intrusive sensors in order to
capture regular passive sensor data and infer regular home activities based on the data.
On this basis, we detect Directly Detected Home Activities (DDHA), such as, TV Watching
and Bathroom Usage and Indirectly Detected Home Activities (IDHA), such as, Meal
Preparation and Taking Shower, using an Abduction-Inference paradigm. On the top, a
model of anomaly behaviour detection for the users is created. At this stage, as our first
attempt in the context of assisted living, we define anomaly behaviour when performing
any of the above activities as either doing it too much or doing it too less with respect to
user’s normal activity account, over a period (time interval). HealthActivityMonitoring and
its models are built and evaluated with real users in a real-life setting across several pilot
in this project.

From a technological point of view, it is based on a combination of IoT technologies,
wearable and smart phone. More importantly, when possible and appropriate, it has
been based on the combination of the above mentioned data with the semantically
formalized health data from the WP4, T4.4 (GK Semantic Data Lake) which, in turns, relies
on FHIR based Data Model developed in WP3, T3.4.

The key goals of HealthActivityMonitoring are:

 monitoring daily living activities (ADL), their classification, and recognition of
routine daily patterns and habits of elderly, including Bathroom-Usage, TV-
Viewing, Sleep-Patter, Mean-Preparation (Breakfast, Lunch and Dinner);

 monitoring daily physical activities (ADL) and recognition of routine daily physical
patterns and habits of elderly, including exercise, distance, number of steps,
average speed, and so on;

AdministrationMarketService Interface

approveUser(user_id): Appr_outcome

Elevates user to marketplace administration

Input(s) User_id The id of the elevating user

Output Appr_outcome The outcome of the approval process

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 63

 detecting anomalies to supporting the remote monitoring from the caregiver
prospective;

 building on the top of the semantic data lake, WP4, T4.4, to enable the
personalized prospective of the above services.

HealthActivityMonitoring Interface

A set of APIs that can we used to extend any fronted application with the ADL AI based
monitoring and anomaly detection engine as described below:

getTVViewingBehaviour(userID:int, startDate:Data, endDate:Data): Result<Object>

Given a specific userID, a start date and an end date, it gives the average hours of TV
watched during that period, plus a Boolean indicating whether the amount is an anomaly
or not.

GET: orgs /{ userID }{ startDate }{ endDate } /tv-viewing-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> the average hours of TV watched by
a specific user, with a Boolean
indicating whether the amount is an
anomaly or not

getBathroomUsageBehaviour (userID:int, startDate:Data, endDate:Data):
Result<Object>

Given a specific userID, a start date and an end date, it gives the Average number of
times bathroom used over a specific period of time, plus a Boolean indicating whether
the amount is an anomaly or not.

GET: /orgs /{ userID }{ startDate }{ endDate } /bathroomusage-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> It gives the Average number of times
bathroom used over a specific
period of time, plus a Boolean
indicating whether the amount is an
anomaly or not.

getActiveTimeBehaviour(userID:int, startDate:Data, endDate:Data): Result<Object>

Given a specific userID, a start date and an end date, it gives the Average hours spent
active – moving from one room to another - at home over a specific period of time, plus
a Boolean indicating whether the amount is an anomaly or not.

GET: /orgs /{ userID }{ startDate }{ endDate } /activetime-behaviour

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 64

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the Average hours spent
active – moving from one room to
another - at home over a specific
period of time, plus a Boolean
indicating whether the amount is an
anomaly or not.

getKitchenUsageBehaviour(userID:int, startDate:Data, endDate:Data): Result<Object>

Given a specific userID, a start date and an end date, it gives the Average hours spent in
kitchen room over a specific period of time, plus a Boolean indicating whether the
amount is an anomaly or not.

GET: /orgs /{ userID }{ startDate }{ endDate } / kitchen-usage-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the Average hours spent
in kitchen room over a specific
period of time, plus a Boolean
indicating whether the amount is an
anomaly or not.

getStepsTakenBehaviour (userID:int, startDate:Data, endDate:Data): Result<Object>

Given a specific userID, a start date and an end date, it gives the number of steps carried
by the user over a specific period of time (steps taken are recorded by the users’
smartwatches and smartphones), plus a Boolean indicating whether the amount is an
anomaly or not.

GET: /orgs /{ userID }{ startDate }{ endDate } / steps-taken-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the number of steps
carried by the user over a specific
period of time (steps taken are
recorded by the users’
smartwatches and smartphones),
plus a Boolean indicating whether
the amount is an anomaly or not.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 65

getBreakfastPreparationBehaviour (userID:int, startDate:Data, endDate:Data):
Result<Object>

GET: /orgs /{ userID }{ startDate }{ endDate } / breakfast-preparation-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the number of times the
user prepared breakfast at home
over a specific period of time, plus
a Boolean indicating whether the
amount is an anomaly or not.

getLunchPreparationBehaviour (userID:int, startDate:Data, endDate:Data):
Result<Object>

GET: /orgs /{ userID }{ startDate }{ endDate } / lunch-preparation-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the number of times the
user prepared lunch at home over
a specific period of time, plus a
Boolean indicating whether the
amount is an anomaly or not.

getDinnerPreparationBehaviour (userID:int, startDate:Data, endDate:Data):
Result<Object>

GET: /orgs /{ userID }{ startDate }{ endDate } / dinner-preparation-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the number of times the
user prepared dinner at home over
a specific period of time, plus a
Boolean indicating whether the
amount is an anomaly or not.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 66

getTakingShowerBehaviour (userID:int, startDate:Data, endDate:Data):
Result<Object>

GET: /orgs /{ userID }{ startDate }{ endDate } / taking-shower-behaviour

Input(s) UserID: int

startDate:Data

endDate:Data

Id of the user participant

startDate

endDate

Output Result<Object> it returns the number of time the
user took the shower over a
specific period of time, plus a
Boolean indicating whether the
amount is an anomaly or not.

4.10 AIPersonalizedRiskDetection&Assessment
GATEKEEPER AIPersonalizedRiskDetection&Assessment Component will encompass a
set of AI/ML-based solutions to the research hypotheses identified and specified within
Tasks 6.1 and 6.2, respectively. The analysis of (i) the medical reference use cases (RUCs
1-7), as they have been described within D6.1.1, along with (ii) the precise mapping of
interventions to measures and respective KETs in D6.2.1, yielded a first description of the
early risk detection and prevention research problems need to be addressed through
AI/ML strategies within GATEKEEPER (Table 3). The definition of the AI/ML research
problems and the analysis of their respective modelling requirements (i.e. the
specification of the input-output spaces and the understanding of the dynamics of each
examined system), considering the description of each Reference Use Case (RUC)
population, will drive the AI/ML model design and development process. In particular,
the design of the AI/ML models development pipeline (data curation, model selection,
hyper-parameter optimization and model evaluation) and the specification of its
individual components (classes of ML algorithms, centralized or distributed learning
schemes) will be affected by the intrinsic characteristics and complexity of each
problem as well as the physical characteristics of GATEKEEPER architecture (e.g.
topology of GATEKEEPER datasets). AI/ML clinical risk prediction models are typically
represented as a classification model or as a time-to-event prediction model;
nonetheless, the integration of longitudinal continuous biological/physiological
monitoring data and EHR data, transfuses dynamic/temporal features to the algorithmic
approaches which will be adopted in GATEKEEPER. To this, searching for novel data
patterns which may lead or be associated with a crucial event will be also examined.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 67

Table 3 - AI/ML Research Hypotheses within GATEKEEPER

Reference Use case Research Problems

RUC1: Lifestyle-
related early
detection and
interventions

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the
associated risk of frailty, or equivalently, prediction of the risk of
frailty.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with frailty.

Identification of high-risk groups.

RUC2: COPD
exacerbations
management

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the risk of
adverse outcomes such as exacerbations in COPD, or equivalently,
prediction of the probability of a COPD exacerbation over a
predefined time interval treated via classification algorithms (e.g.
Class 0: No Event, Class I: Event, or Class 0: Low Risk, Class I:
Intermediate Risk, Class II: High Risk).

 Time to event prediction modelling.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with an exacerbation.

Identification of high-risk groups.

RUC3: Diabetes,
predictive
modelling of
glycaemic status

Predictive Modelling (Inductive Reasoning)

 Blood glucose prediction refers to the short-term prediction of the
time series of subcutaneous glucose concentration. Prediction
horizon may range between 5 and 60 min.

 Dynamic regression problem addressed through adaptive linear
time series or non-linear ML approaches.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns
consistently leading to hypoglycaemic events or related to
hyperglycaemic excursions.

RUC4: Parkinson’s
disease treatment
decision support
system

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the risk of
adverse PD progression over a predefined time interval treated via
classification algorithms (e.g. Class 0: Low Risk, Class I:
Intermediate Risk, Class II: High Risk).

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with adverse PD progression.

 Identification of high-risk groups.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 68

Reference Use case Research Problems

RUC5: Predicting
readmissions and
decompensations in
Heart Failure

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the risk of
adverse outcomes such as a HF decompensation event, or
equivalently, prediction of the probability of a HF decompensation
over a predefined time interval treated via classification algorithms
(e.g. Class 0: No Event, Class I: Event, or Class 0: Low Risk, Class I:
Intermediate Risk, Class II: High Risk).

 Time to event prediction modelling.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with a HF event.

 Identification of high-risk groups.

RUC6: Primary and
secondary stroke
prevention

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the risk of
adverse outcomes such as an incipient stroke event, or
equivalently, prediction of the probability of an incipient stroke
over a predefined time interval treated via classification algorithms
(e.g. Class 0: No Event, Class I: Event, or Class 0: Low Risk, Class I:
Intermediate Risk, Class II: High Risk).

 Time to event prediction modelling.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with a stroke event.

 Identification of high-risk groups.

RUC7: Multi-chronic
elderly patient
management
including
polymedication

Predictive Modelling (Inductive Reasoning)

 Stratification (classification) of the patients according to the risk for
drug-induced or related health problems, or equivalently,
prediction of the probability of a event over a predefined time
interval due to non-adherence or drug interactions treated via
classification algorithms (e.g. Class 0: No Event, Class I: Event, or
Class 0: Low Risk, Class I: Intermediate Risk, Class II: High Risk).

 Polypharmacy complications prediction modelling.

Pattern Mining and Clustering (Inductive Reasoning) – Behavioural
Modelling

 Searching for novel patterns - Recognition of data patterns leading
to/associated with polypharmacy event.

Identification of high-risk groups.

In this direction, the GATEKEEPER AI Reasoning Framework has been developed and
implemented as joint effort between WP5 and WP6/T6.3. Starting from the specific
appliances, sensors and wearable devices, solutions and applications that the
technological consortium partners have made available through others previous
templates, the purpose of the GATEKEEPER AI Reasoning Framework is to clarify the AI-

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 69

Reasoning-Relationship between Technological partners in WP5 and WP6/T6.3 (let’s
call them Producer) and LSP needs (let’s call them Consumer), encouraging AI-model
reusability and cross validation, exchange practices in order to support the GK innovation
statement. Each LSP can be schematized in 4 layers: (i) Consumer Layer; (ii) AI Reasoning
Layer; (iii) Feature Layer, and (iv) Device Layer. The GATEKEEPER AI/ML research
hypotheses for each of the RUCs along with the associated AI/ML modelling needs will
be refined according to the continuing analysis of the pilot’s requirements. On the basis
of a well-defined research hypothesis space, the architecture of the AI/ML models and
their individual components (data selection and management, model training and tuning,
model performance evaluation and clinical evaluation) will be defined in line with good
practices for constantly developing AI/ML-based software in healthcare. The
abovementioned analysis will be reported in the first deliverable of Task 6.3 (i.e. D6.3.1,
M12).

Both phases of training/validation and real-world performance monitoring of the
defined and specified models within the GATEKEEPER AI Reasoning Framework require
that an intermediate layer (interface) between the GATEKEEPER Data Federation
Component and the AI Personalised Risk Detection and Assessment Component
provides/formulates the needed data trajectories. For instance, in the case of a
supervised learning-based risk stratification model such an interface shall provide the
required data trajectories for each individual and input/output measure over a specified
time interval (i.e. monitoring period), provided the sampling interval and , such that the associated training/validation datasets (in the
training/validation phase) or the specified input data vectors (in the real-world
performance monitoring phase). An additional intermediate layer (interface) shall be able
to provide the representation of each built (trained) AI Reasoning model, their internally
validated performance, as well as each AI Reasoning model’s output (e.g. a vector
describing the predicted trajectory of an output variable over a specific prediction
interval , for a specific prediction horizon , or the probability of an event, or
the probability of each of the identified classes over a specific prediction horizon).

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 70

Figure 16 - The GATEKEEPER AI Reasoning Framework.

AIPersonalizedRiskDetection&Assessment provided interface

ConsumeAIService

Interface provided toward any external UI service to allow requests for usage of AI
developed tools over specified datasets

AIPersonalizedRiskDetection&Assessment Requested Interface

Provider Method Description Input Output

BigDataInfrastruc
tureService

 Retrieve specified datasets from the
semantic data lake component to
execute AI reasoning

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 71

4.11 IntelligentMedicalDeviceConnectors
IntelligentMedicalDeviceConnectors offers services allowing to connect devices to the
platform. This component has been designed to reformat device data containing
measurements. This, assuming appropriate configuration (including security protocols)
should be expected to be received by a patient system. There should be no need for the
customer to use our login or UI in a general sense. Although a UI can be used for device
management out of the box, our API endpoints allow CRUD operations with just a bearer
token. So, in this respect the IntelligentMedicalDeviceConnectors should be described
as a medical data integration engine, connecting devices to clinical systems via a cloud
based integration (as described in the Deployment Model), all without needing Bluetooth
pairing or an app to download (for sending measurements).

Figure 17 - Conceptual component overview

IntelligentMedicalDeviceConnectors Provided Interface

A rich API that powers the frontend. A pull-based, public API is available for:

• device management (configuration, retrieve details),

• target system management (destinations for measurements),

• user management (role-based access)

• organisation management.

A push-based API is also available for the purpose of sending measurements in
different formats.

Server

https://api.medisante.net/v1 sending measurements in different formats.

getDevicesByOrgID(orgID: int):devices: List<Device>

List all devices owned by an org

GET: orgs /{orgID} /devices

Input(s) orgID: int Id of the organisation

Output List<Device> List all devices belonging to the
specific organisation

postDevicesByOrgID(orgID: int, device: Device): int

Create a new device for an org

POST: /orgs /{orgID} /devices

https://api.medisante.net/v1/devices

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 72

Input(s) orgID: int

device: Device

Id of the organisation

json with the features of the
device to be created

Output int

getJobStatus(jobID: int):status: String

Get the status of an async job

GET: /jobs /{jobID}

Input(s) jobID: int Id of the async job

Output status: String Return the status of an async job

postDevicesChangeWeightUnit(orgID:int, params: Object): Job

Create an async job to change the weight unit of devices

POST: /orgs /{orgID} /jobs /change-devices-weight-unit

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change weight unit

Output Job Return Job created

postDevicesChangeMinWeight(orgID:int, params: Object): Job

Create an async job to change the minimum weight of devices

POST: /orgs /{orgID} /jobs /change-devices-minimum-weight

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change min weight

Output Job Return async Job

postDevicesChangeTimeZone(orgID: int, params:Object):Job

Create an async job to change the time zone of devices

POST: /orgs /{orgID} /jobs /change-devices-time-zone

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change time zone

Output Job Return async Job

postDevicesChangeHBConfig(orgID: Job, params: Object): Job

Create an async job to change the heartbeat config of devices

POST: /orgs /{orgID} /jobs /change-devices-heartbeat-config

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 73

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change heartbeat configuration

Output Job Return async Job

postResetDeviceToken(orgID: int, params: Object):Job

Create an async job to reset devices tokens

POST: /orgs /{orgID} /jobs /reset-devices-token

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to reset device tokens

Output Job Return async Job

postDeviceTargetSystem(orgID: int, params: Object):Job

Create an async job to change the target systems of devices

POST: /orgs /{orgID} /jobs /change-devices-target-systems

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change device target systems

Output Job Return async Job

postTransferDeviceOwnership(orgID: int, params: Object):Job

Create an async job to transfer the ownership of devices

POST: /orgs /{orgID} /jobs /transfer-devices-ownership

Input(s) orgID: int

params: Object

Id of the organisation

Object containing device in order
to change device target systems

Output Job Return async Job

getDevice(deviceID: int): Device

Retrieve the details of a device

GET: /devices /{deviceID}

Input(s) deviceID: int Id of the device to return

Output Device Detail of the requested device

getDeviceMetrics(deviceID: int): Metrics

Retrieve the metrics for a device

GET: /devices /{deviceID} /metrics

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 74

Input(s) deviceID: int Id of the device to return

Output Metrics Metrics of the specific device

getAllDevices(): List<Device>

List all devices

GET: /devices

Input(s) - -

Output List<Device> List all devices

getAllTargetSystem(orgID: int): List<TargetSystem>

List all target systems owned by an org

GET: /orgs /{orgID} / target-systems

Input(s) orgID: int Id of the organisation which target
system belong to

Output List<TargetSystem> Return the list of target system
within specific organisation

postTargetSystem(orgID: int, ts: TargetSystem): int

Create a new target system for an org

POST: /orgs /{orgID} / target systems

Input(s) orgID: int

ts: TargetSystem

Id of the organisation

Target system for the specific
organisation

Output int

postCareTargetSystem(orgID: int, ts: TargetSystem): int

Create a new Eliot Care target system for an org

POST: /orgs /{orgID}/care-target-systems

Input(s) orgID: int

ts: TargetSystem

Id of the organisation

Care target system for the specific
organisation

Output int

getTargetSystem(targetSystemID: int): TargetSystem

Retrieve the details of a target system

GET: /target-systems /{targetSystemID}

Input(s) targetSystemID: int Id of the target system

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 75

Output TargetSystem Details of the specific target
system

patchTargetSystem(targetSystemID: int, ts: TargetSystem): void

Modify a target system

PATCH: /target-systems /{targetSystemID}

Input(s) targetSystemID: int

ts: TargetSystem

Id of the target system to modify

Target system to modify

Output void

deleteTargetSystem(targetSystemID: int): void

Delete a target system

DELETE: /target-systems /{targetSystemID}

Input(s) targetSystemID: int Id of the target system to delete

Output void

postSendTestMeasurement(targetSystemID: int, test: Measurement): void

Sends test measurements to a target system

POST: /target-systems /{targetSystemID} /send-test-measurements

Input(s) targetSystemID: int

test: Measurement

Id of the target system

Test measurement to send to
target system

Output void

getAllUsers(): List<User>

Retrieve all users the user has access to

GET: /users

Input(s) none

Output users: List List of all users

postCreateUser(user: User): int

Create a new user

POST: /users

Input(s)

user: User Information to create a new user

Output

int

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 76

postAddRoles(userID: int, roles: List<Role>): void

Add global roles for a user

POST: /users /add-global-roles

Input(s) userID: int

roles: List<Role>

Id of the user

List of the roles provide for the
specific user

Output Void

postRemoveGlobalRoles(userID: int): void

Remove global roles for a user

POST: /users /remove-global-roles

Input(s) userID: int Id of the user

Output none

getUser(userID: int): User

Retrieve the details about a user

GET: /users/{userID}

Input(s) userID: int Id of the user to retrieve
information

Output User The user

postResendPWD(userID: int): void

Resends a password activation email to the user

POST: /users /{userID}/resend-user-password

Input(s) userID: int Id of the user to which resend
password activation email

Output none

getRoles(): List<Role>

Retrieve all roles the user has right to manage

GET: /roles

Input(s) none

Output role: List Return the list of all roles the user
has right to manage

getOrgs(): List<Organization

Retrieve all orgs the user has access to

GET: /orgs

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 77

Input(s) none

Output List<Organization> Return the list of organizations the
user has access

postOrganization(orgs: Organization) : int

Create a new org

POST: /orgs

Input(s) orgs: Organization Information to create a new
organization

Output int The id of the organization

getOrg(orgID: int): Organization

Retrieve the details about an org

GET: /orgs /{orgID}

Input(s) orgID: int Id of an organization

Output Organization Detail about the specific
organization

patchOrg(orgID: int): org: Organization

Update an org

PATCH: /orgs /{orgID}

Input(s) orgID: int Id of an organization

Output Organization Detail about the specific
organization

postAddRole(orgID: int, roles: List<Role>): void

Add org roles for a user

POST: /orgs /{orgID}/add-roles

Input(s) orgID: int

roles: List<Role>

Id of organization

List of roles to add for a user

Output void

postRemoveRole(orgID: int): void

Remove org roles for an organization

POST: /orgs /{orgID}/remove-roles

Input(s) orgID: int Id of organization

Output void

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 78

IntelligentMedicalDeviceConnectors Requested Interface

To exploit all IntelligentMedicalDeviceConnectors service functionalities, it will need
from the GK Platform:

 An endpoint to send measurement data to.

 Basic authentication (API keys, TLS, OAuth 2.0)different forms.

4.12 AuthoringToolForDashboards
This component offers a visual service allowing pilot sites to configure specific
dashboards targeting healthcare professionals in order to show a graphical
representation of the patient data and observations collected. For doing so, this
component will use the Health semantic model based on FHIR as common basis for the
data visualization.

This component will be web-based, and it will provide a user-friendly and intuitive
Graphical User Interface. The component enables the visualization not only of patient’s
current status but also historical trends and comparison analysis between patient
groups.

AuthoringToolForDashboards Provided Interface

A visual interface where the following initial features will be provided:

 Patient management

 GK data categorization and visualization

 Dashboard configuration and visualization

4.13 MultiRobotConnectors
The MultiRobotConnectors implement a fully autonomous and modular robotic platform
combined with an intervention for in-house assistance. The application will focus on
three or four main functionalities depending on the hardware configuration.

 Exploration. A patrolling robot that navigates autonomously around the house by
exploiting a pre-existing map of the building. While patrolling it scans the
environment using cameras and depth sensors and use them to identify
potentially hazardous situations, the location of some key objects, habits of the
user to help maintain a routine or react to an unexpected event.

 Reminders. The robot can act as an embodied reminder system to rely to the
user notifications coming from different applications. With its ability to detect
activities and habits, the robot can perform intelligent reminders depending on
the behaviour and actions of the user.

 Telepresence. Multiple forms of teleoperation can be used to remotely pilot the
robot and interact with the user or explore the environment. Goal-based
asynchronous teleoperation (e.g. “go to the kitchen” or go to a specific location).
Semi-assisted free navigation. Direct teleoperation using a dedicated connection.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 79

 Manipulation. In the case of platforms equipped with a robotic arm the robot can
directly interact with the environment to resolve hazardous situation or to help
the user.

The core functionalities of the robot are developed using ROS (Robot Operating
System). ROS is a modular and open source framework based on asynchronous
message exchange to develop a component-based architecture; it is the de facto
standard for robot software development. Additionally, the robot will interface with a
web-based data hub that will collect most of the raw measurements and all the
processed information, such as user location, user activities, object location, hazards
detected, etc.

MultiRobotConnectors Provided Interface

The data hub acts as a web-based interface to let external entities access the sensor
readings and processed information generated by the robot. Such data streams
include:

 2D map of the environment

 Position of the robot

 Position of the user

 Position of objects and environmental hazards

 Approximation of activities of the user (e.g., working, sleeping, cooking)

 Raw data stream from the robot sensors

Example API:

/{robotID}/robot-2D-location: GET

Return the most recent robot position given the ID of specific robot

GET

Input(s) robotID: string Id of the robot

Output {

 "@id": "string",

 "@type": "RobotLocation",

 "timestamp": "2020-06-29T16:08:34.256Z",

 "x": 0,

 "y": 0

}

Timestamped 2D location
of the robot with respect to
a predefined origin.

The data hub also acts as an interface to asynchronously teleoperate the robot by
collecting precise goals and destinations.

Example API:

/{robotID}/robot-2D-goal: POST

Return the most recent robot position given the ID of specific robot

GET

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 80

Input robotID: string Id of the robot

Input {

 "@id": "string",

 "@type": "RobotGoal",

 "timestamp": "2020-06-29T16:08:34.256Z",

 "x": 0,

 "y": 0

}

Timestamped 2D goal to
be reached by the robot
with respect to a
predefined origin.

MultiRobotConnectors Requested Interface

One of the key features of the robotic platform is the ability to create a bidirectional
communication between the robot and the smart environment. The GATEKEEPER
platform needs to provide interfaces to access data streams generated by
environmental sensors and personal devices. This can be used by the robot to
enhance its predictions, for example by correcting the estimate of the user activities by
using data provided by a smart watch.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 81

5 Components Interactions
In this section, the main components interactions are listed as sequence diagrams.

Each flow was formalized analysing user stories from different sources:

 D6.2 deliverable [2], that gives an overview of the overall functionalities requested by
pilots;

 A draft12 of D3.1 deliverable [1] on platform and user requirements.

 Each user story has been analysed to extract expected behaviours of the platform
and, interacting with the pilot owners, alternative solutions have been identified to
reflect any difference in the integration strategy of each pilot.

 The interfaces detailed in the section above have been used as the “building blocks”
for the realization of the sequence diagrams.

 For each flow, together with the textual description and the diagram describing it,
there is the list of the user stories that are related. There is also pointer to alternative
flows, if there are any, and an explanation of the need for an alternative.

 A summarization of the components involved in the data flows can be found in
Appendix C.

Interactions that relate more directly to user stories are named GKPILOT_xx while base
interactions supporting requirements at different levels are named GK_PLAT_xx.

12

 the final version will be available at M10

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 82

5.1 GKPILOT_01
An AuthorizedActor subscribes to health events of a patient and receives
notifications

This flow describes interaction between an Authorized user (e.g. GP, Nurse) and the
Platform in order to monitor in remote mode the Patient.

User uses the External App UI (a thing registered to the platform) to get notifications on
the Patient health status. ThingsManagementSystem forwards the requested query to
the BigDataInfrastructure. The BigDataInfrastructure continuously receives events from
the GK-FederationService and in case the requested conditions are met notifies the
event back to the requesting Thing.
The notification is then pushed to the requesting actor as notifications/alarms.

ASSOCIATED USER STORIES

d62.13.03 – GP receives notifications [Puglia, Basque Country, Lodz]

d62.13.04 – Nurse receives notifications [Puglia, Basque Country]

d62.13.05 – Contact Centre receives notifications [Aragòn, Basque Country]

ASSOCIATED PLATFORM REQUIREMENTS

Req_UI_03- System connects and provides information to Social Services and primary
healthcare for better intervention

Req_UI_04 - System connects and provides information to healthcare professionals

Req_AI_15 - System provides periodic reports and historical data about assisted elderly
activity

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 83

5.2 GKPILOT_02
A GK actor browses the MarketService catalogue to find a suitable solution and
obtains the endpoint of the service

This flow describes interaction between a GK actor and the Platform to discover a
solution for his needs (e.g. to monitor a Patient).

The User searches for a solution through MarketService UI that forwards to
ThingsManagementSystem in order to find it. An endpoint of the service (linked to the
suitable solution) is returned to user. Then he can register to use this service (using
ExternalApp UI)

ASSOCIATED USER STORIES

d62.14.01 – GP accesses MarketPlace [Aragòn, Puglia]

d62.14.10 – MedTech Company promotes closed platform [Attica and Central Greece]

ASSOCIATER PLATFORM REQUIREMENTS

Req_UI_19 Users must be able to choose the services, service components and
applications they will use.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 84

5.3 GKPILOT_03
Pilot app monitors data directly getting metrics from devices

This flow describes interaction between app belonging to Pilot and smart devices within
the Platform in order to directly monitor the data.

In a first loop ThingsManagementSystem processes and forwards the request to the
IntelligentMedicalDeviceConnectors component. In this case, metrics of device are
collected and then sent back to the requesting service.

The second loop refers to devices that are registered directly as Things and the
collection of data is managed by the External service.

ASSOCIATED USER STORIES

d62.13.06 - GP consults Dashboard [Attica and Central Greece, Basque Country, Milton
Keynes, Lodz]

d62.13.09 - Caregiver consults Dashboard [Attica and Central Greece, Saxony]

ASSOCIATED PLATFORM REQUIREMENTS

Req_UI_09 Allow the configuration of activity monitoring by caregivers (formal and
informal)

Req_UI_23 Allow the configuration of activity monitoring by caregivers (formal and
informal)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 85

ALTERNATIVE FLOWS

This flow represents a low integration to the GK platform, where most of the
computation is kept in the external applications. A use case that has a similar integration
approach is Attica and Central Greece. An alternative flow that involves a deeper
integration with the platform is described in GKPLAT_04.

5.4 GKPILOT_04
HealtcareProfessional uses pilot app to send feedback to patient

This flow describes interaction between Reference HealthCare Professional and
ExternalApp (i.e. Pilot app) in order to notify feedback to Patient.

The HC Professional checks for patient status through the UI that gets this information
by the user story described above (GKPILOT_03). Once information has been received,
the RHP sends feedback to the Patient that is conveyed in the patient UI.

ASSOCIATED USER STORIES

d62.13.02 GP prescribes Digital Coach

ASSOCIATED PLATFORM REQUIREMENTS

Req_UI_06 Help Desk services will be implemented to support / inform final users
and informal caregivers.

Req_AP_08 Notification system on the watch must be configurable to deliver
medication reminders, and able to be programmed remotely

ALTERNATIVE FLOWS

The data that allow the HC Professionals to formulate their feedback can be the result of
integration with the platform as in GKPLAT_04. Also, digital coaching can be driven by AI
Algorithms of integrated Dynamic Interventions services (see GKPILOT_09)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 86

5.5 GKPILOT_05
A Citizen registers his or her identity to the Thing s/he bought through the
MarketService

This flow describes interaction between a Citizen and the GK Platform in order to allow
access to register to the health promotion app.

The User through the MarketService UI searches for the specific Service in which is
interested. ThingsManagementSystem provides to discover the corresponding Thing
and through the MarketService returns the endpoint of the service.

Then the logged user (login in the ExternalApp UI) registers his/her credentials using the
ExternalApp related to the health promotion. Then ThingsManagementSystem provides
to finalize this operation and to assign a role to patient (in terms of permissions) to
access the application.

ASSOCIATED USER STORIES

d62.14.10 – MedTech Company promotes closed platform [Attica and Central Greece]

ASSOCIATED PLATFORM REQUIREMENTS

Req_PS_02 The use of information will be closely linked to identification mode -
enabled users will only have access to the information they have been enabled for.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 87

5.6 GKPILOT_06
Pilot app generates advices without exploiting platform services

This flow describes a direct interaction between a Patient and the pilot app.

Notifications are generated and sent to the patient without the pilot app interacting with
the services offered by the platform (s. description of second loop in GKPILOT_03).

ASSOCIATED USER STORIES

d62.13.02 – GP prescribes Digital Coach [Aragòn, Puglia, Attica and Central Greece,
Cyprus, Basque Country, Lodz]

ASSOCIATED PLATFORM REQUIREMENTS

Req_AI_08 System sends alerts to remind the elderly daily habits / routines (decided
by elderly and also by caregivers)

ALTERNATIVE FLOWS

The recommendation can be formulated by data processing of Integrated Dynamic
intervention services. (See GKPILOT_09)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 88

5.7 GKPILOT_07
A Pilot actor configures the dashboard for patient’s data visualization.

This flow describes interaction between a Pilot actor (e.g. reference healthcare
professional or Citizen) in order to visualize patient’s data within a dashboard.

Through the authorization tool the request of the patient’s data is forwarded to the GK-
FHIR Server which provides the required data.

Then the user selects the data he wants to visualize and sends the request to the
AuthoringTool for the configuration of the dashboard. The Dashboard is displayed.

ASSOCIATED USER STORIES

d62.13.06 - GP consults Dashboard [Aragon, Puglia, Attica and Central Greece, Basque
Country, Milton Keynes, Lodz]

d62.13.07 - Nurse consults Dashboard [Aragon, Puglia, Basque Country, Milton Keynes,
Lodz]

d62.13.08 - Contact Centre consults Dashboard [Aragon]

d62.13.09 - Caregiver consults Dashboard [Puglia, Attica and Central Greece]

d62.13.10 - Pharmacist Consults Dashboard [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_AP_03 The solution shall provide a dashboard displaying the user's personal data

Req_AP_06 Participants should be able to have an overview of the data gathered and
trends, changes etc. through a web portal

Req_AI_01 Generation of reports on routines to detect trends on the assisted person
behaviour

Req_AI_11 Trend information may require graphic representations.

ALTERNATIVE FLOWS

Dashboards are managed directly by the External Application (GKPLAT_06)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 89

5.8 GKPILOT_08
A BusinessActor adds a new KET in the MarketService

This flow describes how a Business actor can create an Offering in the market service to
promote a closed platform or KET.

The flow highlights also the certification process that is triggered by the registration of
the Thing in the Platform.

ASSOCIATED USER STORIES

d62.14.09 - Medtech Company promotes modular KET [Aragòn, Puglia, Saxony]

d62.14.11 - Medtech Company integrates KET in existing platform [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_DSP_02 The IoT platform should allow its own extension with other components
(new sensors, new connectors etc) without a need for adaptation

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 90

5.9 GKPILOT_09
A patient gets automatic recommendations

This flow describes how a Citizen (Patient or caregiver) can get automatic
recommendations generated by computations of the platform AI Services.

ASSOCIATED USER STORIES

d62.13.02 - GP prescribes Digital Coach [Aragòn, Puglia, Attica and Central Greece,
Cyprus, Basque Country, Lodz]

ASSOCIATED PLATFORM REQUIREMENTS

Req_UI_06 Help Desk services will be implemented to support / inform final users
and informal caregivers.

Req_AP_08 Notification system on the watch must be configurable to deliver medication
reminders, and able to be programmed remotely

ALTERNATIVE FLOWS

GKPILOT_04 (recommendations are generated by the External App (Pilot App) accessing
data through the platform.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 91

5.10 GKPLAT_01
A Business actor browses the MarketPlace catalogue using specific constraints

This flow describes interaction between a Business actor and the MarketPlace.

A Business actor asks through MarketPlace User Interface for available Things within the
MarketPlace Catalogue. The ThingsManagementSystem provides to get requested
Things.

ASSOCIATED USER STORIES

d62.13.01 – GP prescribes Digital Patient Monitoring [Aragòn, Puglia, Attica and Central
Greece, Cyprus, Saxony, Basque Country, Lodz]

d62.13.02 GP prescribes Digital Coach [Aragòn, Puglia, Attica and Central Greece,
Cyprus, Basque Country, Lodz]

d62.14.01 – GP accesses MarketPlace [Aragòn, Puglia]

d62.14.12 – Hospital Clinician recommends Big Data Analytics Algorithm [Puglia]

d62.14.14 – Caregiver recommends platform [Milton Keynes]

ASSOCIATED PLATFORM REQUIREMENTS

None

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 92

5.11 GKPLAT_02
An Authorized user / service registers a new GK Thing in the TMS through the Market
Service.

This flow describes the interaction between the user and the platform for the first time
that a Thing is used.

Since in the first use case, it is needed to ask for an authorization and certify the
component before registeding it in the ThingDirectory and then using it.

ASSOCIATED USER STORIES

d62.14.02 GP assesses regulatory compliance [Aragon, Puglia]

d62.14.08 Healthcare Provider assesses sustainability [Aragon]

ASSOCIATED PLATFORM REQUIREMENTS

None

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 93

5.12 GKPLAT_03
An authorized user / service wants to find a Thing in the TMS to use it

This flow describes the interaction between an authorized user and the
ThingsManagementSystem in order to search for a Thing and use it.

The ThingsManagementSystem discover the Thing in the ThingDirectory and then
expose it. The user is able to consume the Thing sending a request to the TMS or
MicroService.

The TrustAuthority is responsible for Security.

ASSOCIATED USER STORIES

d62.14.04 Healthcare Provider integrates Digital Patient Monitoring data in EHR [Aragon,
Puglia]

d62.14.05 Healthcare Provider combines existing KETs available in GATEKEEPER Spaces
[Aragon, Puglia, Basque Country]

d62.14.10 - Medtech Company promotes closed platform [Attica and Central Greece]

d62.14.11 - Medtech Company integrates KET in existing platform [Puglia]

d62.14.12 Hospital Clinician recommends Big Data Analytics Algorithm [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_DSP_02 The IoT platform should allow its own extension with other components
(new sensors, new connectors etc) without a need for adaptation

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 94

5.13 GKPLAT_04
A KET sends data to the platform

This flow describes interaction between KETs producing patient data and the
GATEKEEPER Platform.

A user can use a variety of KETs (e.g. medical devices) without worrying on how they will
send data to the platform.

KETs registered as Things can interact with the platform directly sending updated
measurements.

KETs with no HTTP support or not registered as Things in the platform can send data
(e.g. measurement) to a data collector (e.g. IntelligentMedicalDeviceConnectors) that will
take care to collect all the measurements and forward them to the platform in a suitable
format.

Other KETs (supported robots in particular) can send their data mediated by the
MultiRobotConnectors.

ThingsManagementSystem will mediate the interaction between Things producing data
and the GK-IntegrationEngine that provide a mapping to the GATEKEEPER FHIR profile
and store incoming data in the GK FHIRServer.

ASSOCIATED USER STORIES

d62.13.01 – GP prescribes Digital Patient Monitoring [Aragòn, Puglia, Attica and Central
Greece, Saxony, Basque Country, Lodz]

d62.14.05 – Healthcare Provider combines existing KETs available in GATEKEEPER
Spaces [Aragòn, Puglia, Basque Country]

ASSOCIATED PLATFORM REQUIREMENTS

Req_DS_01 The data produced by IoT sensors must be stored in local premises or in
the HPE Cloud

Req_DSP_03 The system must be able to acquire body weight measurements collected
by smart devices

Req_DSP_04 System collects information useful for the early detection of pathologies
(insomnia, physical inactivity through wearables…)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 95

Req_DSP_05 Connection with medical devices to measure vital signs (blood pressure,
glucose…)

Req_DSP_07 User monitoring must be performed using IoT sensors able to provide
their measurements via an Internet or a Bluetooth connection.

Req_DSP_08 Data collection must be as "transparent" to the user as possible (i.e. no
need for user intervention). The IoT sensors should not require the user to change their
daily living habits.

Req_AI_06 The data collected by IoT sensors must be processed to generate
information about the well-being and health status of the user

ALTERNATIVE FLOWS

Data are sent and managed by registered External Applications (GKPLAT_03)

5.14 GKPLAT_05
The GK Integration Engine pulls data from configured external repos to integrate
them in the platform

This flow describes interaction between the GK-IntegrationEngine and the GATEKEEPER
Platform.

A user uses a KET (e.g. medical device) and it sends data (e.g. measurement) to an
external repository.

GK-IntegrationEngine reads (at regular intervals) data stored and sends it to GK-
FHIRServer

ASSOCIATED USER STORIES

d62.14.03 – Healthcare Provider make EHR data accessible within GATEKEEPER Spaces
[Aragòn, Puglia, Basque Country]

d62.14.04 - Healthcare Provider integrates Digital Patient Monitoring data in EHR [Aragòn,
Puglia]

d62.14.06 – Healthcare Provider avoids overlaps with legal KETs [Aragòn, Puglia, Basque
Country]

ASSOCIATED PLATFORM REQUIREMENTS

Req_DA_02 Data should link to GP record so can view activity, plus gather info on
hospital admissions etc. Will need to fit with services provided by EMIS and TPP to
achieve

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 96

5.15 GKPLAT_06
An Authorized user reads federated data from the Platform

This flow describes interaction between an Authorized user and the Platform to read a
set of data stored in the Platform.

Authorized user makes a request through an UI for specific data to visualize. The request
is mediated by the ThingsManagementSystem that checks authorization and allows the
access to the data by reading the GK-FHIRServer.

ASSOCIATED USER STORIES

d62.13.11 Specialist Clinician evaluates Digital Patient Monitoring reports [Puglia]

d62.13.12 Hospital Clinician evaluates Digital Patient Monitoring reports [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_UI_03 System connects and provides information to Social Services and primary
healthcare for better intervention

Req_UI_04 System connects and provides information to healthcare professionals

Req_AI_06 The data collected by IoT sensors must be processed to generate
information about the well-being and health status of the user

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 97

5.16 GKPLAT_07
Data series can be aggregated / anonymised in order to be included in an offering in
the MarketService

This flow describes interaction the flow of creation of purely informative offerings. In this
case the offering is on anonymised data series. The Business Actor (Developer or
Company) will have the possibility to choose the dataset he/she wants to include, then
the MarketService will gather the data and anonymise them before returning them to the
authorized developer to detail the commercial offering.

ASSOCIATED USER STORIES

None

ASSOCIATED PLATFORM REQUIREMENTS

Req_AI_18 System products (data, analysis, messages, highlights) could be purely
informative.

5.17 GKPLAT_08
Health data are processed by Processing Services to create views and trends to offer
to Authorized users

This flow describes interaction between an authorized GK-Actor (HealthCare
Professional or Citizen) and the platform in order to retrieve processed data for a patient
or a set of patients.

The process starts with a request through an ExternalApp (e.g. Pilot App). The
ThingsManagementSystem resolves the request and verifies the authorization using
services of the GTA (see GKPLAT_09). In this case the action is then forwarded to the
Home and Health Activity Monitor to compute the active time of a patient. The service
takes care to retrieve the data from the GK FHIR server and transform them in the
required format and then send them back to the user to be visualized.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 98

ASSOCIATED USER STORIES

d62.13.06 – GP consults Dashboard [Aragòn, Puglia, Basque Country, Milton Keynes,
Lodz]

d62.13.07 - Nurse consults Dashboard [Aragòn, Puglia, Basque Country, Lodz]

d62.13.08 – Contact Centre consults Dashboard [Aragòn]

d62.13.09 - Caregiver consults Dashboard [Puglia, Saxony]

d62.13.10 – Pharmacist consults Dashboard [Puglia]

d62.13.11 - Specialist Clinician evaluates Digital Patient Monitoring reports [Saxony,
Basque Country]

d62.13.12 - Hospital Clinician evaluates Digital Patient Monitoring reports [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_AI_01 Generation of reports on routines to detect trends on the assisted person
behaviour

Req_AI_06 The data collected by IoT sensors must be processed to generate
information about the well-being and health status of the user

Req_AI_09 System suggests to the elderly to do physical activity or other activities

Req_AI_14 The solution shall detect if the assisted is in bed or chair and estimate the
time spent in bed or chair

ALTERNATIVE FLOWS

GKPLAT_12 (use AI Services to process data)

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 99

5.18 GKPLAT_09
A GK Actor sends a request to the platform and its authorization is verified

This is the detailed flow that shows how authorization is checked in the GATEKEEPER
platform, when a registered actor requests to perform an action on a registered Thing.

ASSOCIATED USER STORIES

None

ASSOCIATED PLATFORM REQUIREMENTS

Req_PS_02 The use of information will be closely linked to identification mode -
enabled users will only have access to the information they have been enabled for.

Req_DSP_10 The solution shall communicate only with authenticated devices

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 100

5.19 GKPLAT_10
A user registers to platform

This flow represents the case when a Developer registers to the platform and is given an
authorization token to be used in the services he/she will develop

ASSOCIATED USER STORIES

None

ASSOCIATED PLATFORM REQUIREMENTS

Req_PS_01 Security of data and information generated (prevention from unauthorised
access)

Req_PS_07 The system should be managed by a User Management module to control
access in UIs and services

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 101

5.20 GKPLAT_11
A User is authorized to accesses a Thing in the platform

This flow shows the process of authorizing a used to access a specific Thing. The flow
highlights the mechanism of associating an authorization token to a Thing Description in
the Trust Authority

First the User requests the ThingDescription to the TMS, using its authorization Token.
The TMS delegates the authentication of the user to the GTA, and requests the
ThingDescription to the ThingsDirectory, that is returned to the User. The user is now
authorized to consume actions on the Thing, and every access to it is logged in the GTA.

ASSOCIATED USER STORIES

None

ASSOCIATED PLATFORM REQUIREMENTS

Req_PS_02 The use of information will be closely linked to identification mode - enabled
users will only have access to the information they have been enabled for.

Req_PS_07 The system should be managed by a User Management module to control
access in UIs and services

Req_DSP_10 The solution shall communicate only with authenticated devices

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 102

5.21 GKPLAT_12
A Healthcare professional requests through an External App (e.g. Pilot app) the
platform to compute a risk prediction for a patient exploiting the AI services

The flow shows the interaction between External Apps and the Personalized Risk
detection service. To provide its services this component exploits the functionalities and
tools provided by the BigDataInfrastructure, that gets data from the GK Platform FHIR
server.

ASSOCIATED USER STORIES

d62.14.12 Hospital Clinician recommends Big Data Analytics Algorithm [Puglia]

ASSOCIATED PLATFORM REQUIREMENTS

Req_AI_05 Alarm to alert informal caregivers or emergence services of a risky situation
stemming from a period of inactivity

Req_AI_13 Algorithm on falls identification decides where to send alerts based on risk
and information given on sign up -informal carers, services etc.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 103

6 Conclusions
The first design of the GATEKEEPER architecture lays the foundation for the
GATEKEEPER platform components integration. Basing its principles in the Web of
Things reference architecture, it addresses pilot requirements in deliverable D6.2, and a
first set of functional requirements defined in an early version of deliverable D3.1 (also
informed by user requirements by D2.3).

The role of each of the primary components provided by WP4 and WP5 has been
identified, as long as the component interactions among them and with external
services. The architecture design provides to the reader an overall view of the
GATEKEEPER components and their interfaces, together with an early definition of the
hardware requirements and the infrastructure that is being set up to allow the correct
operation of the system.

This architecture will serve as an instrument for the supervision of the design and
implementation done in WP4 and WP5 to ensure the compliance of components with
the reference architecture and to smooth the component integration.

This architecture will be improved and better defined in the next months. A second
version of this deliverable is planned at M18 (8 months from now) to report the new
resulting architecture.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 104

7 References
[1] GATEKEEPER Consortium, Deliverable D3.1 - Functional and technical

requirements of GATEKEEPER platform [due September, 2020]
[2] GATEKEEPER Consortium, D6.2 - Early detection and interventions operational

planning [March, 2020]
[3] GATEKEEPER Consortium, D2.3 - User Requirements and Taxonomy [June, 2020]
[4] Guinard, Dominique; Vlad, Trifa (2015). Building the Web of Things. Manning. ISBN

9781617292682.
[5] https://webofthings.org/2017/04/08/what-is-the-web-of-things/
[6] https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRU

y0ZzUF
[7] https://publications.csiro.au/rpr/pub?pid=csiro:EP189892
[8] https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-

submission/
[9] https://www.w3.org/TR/wot-architecture/#sec-building-blocks
[10] https://json-ld.org/
[11] https://w3c.github.io/wot-thing-description/
[12] Li, W., Tropea, G., Abid, A., Detti, A., & Le Gall, F. (2019, June). Review of Standard

Ontologies for the Web of Things. In 2019 Global IoT Summit (GIoTS) (pp. 1-6). IEEE
[13] https://json-ld.org/
[14] http://hl7.org/fhir/summary.html
[15] Fielding, Roy Thomas. Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation, University of California, Irvine [2000]
[16] Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trends," 2017 IEEE International
Congress on Big Data (BigData Congress), Honolulu, HI, [2017], pp. 557-564

[17] https://saref.etsi.org/
[18] https://www.openapis.org/
[19] https://www.internationaldataspaces.org/

https://webofthings.org/2017/04/08/what-is-the-web-of-things/
https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRUy0ZzUF
https://www.computer.org/csdl/magazine/cd/2018/04/mcd2018040012/13rRUy0ZzUF
https://publications.csiro.au/rpr/pub?pid=csiro:EP189892
https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-submission/
https://www.w3.org/blog/wotig/2017/01/13/web-thing-model-member-submission/
https://www.w3.org/TR/wot-architecture/#sec-building-blocks
https://json-ld.org/
https://w3c.github.io/wot-thing-description/
https://json-ld.org/
http://hl7.org/fhir/summary.html
https://saref.etsi.org/
https://www.openapis.org/
https://www.internationaldataspaces.org/

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 105

Appendix A User Stories
The pilot use case specifications were collected from pilots (WP6) by extending (with further details) the “#5 reference use cases” included
in DoA (section 1.3.4.3) and using as basis the user stories listed in D6.2 [2] in tables 13 and 14.

Such user stories have been analysed and high-level “common” requirements for the platform have been extracted (as agile user stories)
and described in section 5 in the form of components interactions. An overview of the mapping is summarized in the table below.

User story ref User story Title Interaction IDs Applicable Pilots

AS IS

d62.13.01 GP prescribes Digital Patient Monitoring GKPLAT_01, GKPLAT_04
Aragón, Basque Country, Cyprus, Attica and
Central Greece, Puglia, Lodz, Saxony

d62.13.02 GP prescribes Digital Coach

GKPILOT_04, GKPILOT_06 Attica and Central Greece

GKPLAT_01, GKPILOT_09
Aragón, Basque Country, Cyprus, Puglia, Lodz,
Saxony

d62.13.03 GP receives notifications GKPILOT_01 Basque Country, Puglia, Lodz

d62.13.04 Nurse receives notifications GKPILOT_01 Basque Country, Puglia

d62.13.05 Contact Centre receives notifications GKPILOT_01 Aragón, Basque Country

d62.13.06 GP consults Dashboard
GKPILOT_07, GKPLAT_08 Aragón, Basque Country, Puglia, Lodz

GKPILOT_03, GKPILOT_07 Attica and Central Greece

d62.13.07 Nurse consults Dashboard GKPILOT_07, GKPLAT_08 Aragón, Basque Country, Puglia, Lodz

d62.13.08 Contact Centre consults Dashboard GKPILOT_07, GKPLAT_08 Aragón

d62.13.09 Caregiver consults Dashboard
GKPILOT_07, GKPLAT_08 Puglia, Saxony

GKPILOT_03, GKPILOT_07 Attica and Central Greece

d62.13.10 Pharmacist Consults Dashboard GKPILOT_07, GKPLAT_08 Puglia

d62.13.11
Specialist Clinician evaluates Digital Patient
Monitoring reports

GKPLAT_06, GKPLAT_08 Basque Country, Saxony

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 106

User story ref User story Title Interaction IDs Applicable Pilots

d62.13.12
Hospital Clinician evaluates Digital Patient
Monitoring reports

GKPLAT_06, GKPLAT_08 Puglia

d62.13.13 Informal Caregiver trained to recognize risks - Basque Country

d62.13.14 Elderly Citizen trained to recognize risks - Basque Country

d62.13.15 Caregiver supports Elderly Citizen with KET - Aragón, Basque Country

TOBE

d62.14.01 GP accesses Marketplace GKPILOT_02, GKPLAT_01 Aragón, Puglia

d62.14.02 GP assesses regulatory compliance GKPLAT_02 Aragón, Puglia

d62.14.03
Healthcare Provider make EHR data accessible
within GATEKEEPER Spaces

GKPLAT_05 Aragón, Basque Country, Puglia

d62.14.04
Healthcare Provider integrates Digital Patient
Monitoring data in EHR

GKPLAT_03, GKPLAT_05 Aragón, Basque Country, Puglia

d62.14.05
Healthcare Provider combines existing KETs
available in GATEKEEPER Spaces

GKPLAT_03, GKPLAT_04 Aragón, Basque Country, Puglia

d62.14.06
Healthcare Provider avoids overlaps with legacy
KETs

GKPLAT_05 Aragón, Basque Country, Puglia

d62.14.07 Healthcare Provider compiles DMP

Aragón, Basque Country

d62.14.08 Healthcare Provider assesses sustainability GKPLAT_02 Aragón, Basque Country

d62.14.09 Medtech Company promotes modular KET GKPILOT_08 Aragón, Basque Country, Puglia

d62.14.10 Medtech Company promotes closed platform
GKPILOT_02, GKPILOT_05,
GKPLAT_03

Attica and Central Greece

d62.14.11
Medtech Company integrates KET in existing
platform

GKPILOT_08, GKPLAT_03 Puglia

d62.14.12
Hospital Clinician recommends Big Data Analytics
Algorithm

GKPLAT_01, GKPLAT_03,
GKPLAT_12

Puglia

d62.14.13 Heath Policy Body conducts analysis

Aragón, Basque Country, Puglia

d62.14.14 Caregiver recommends platform GKPLAT_01 Milton Keynes

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 107

Appendix B Platform Requirements
The list of platform requirements as per deliverable D3.1 draft (June 2020)

Type ID Description Platform Interaction

USER Req_UI_01 Solution and information visually accessible and friendly for elderly people users (big
displays, big buttons, voice feedback…)

USER Req_UI_02 Easy interaction for elderly people (to write, to read, hand tremor handling…)

USER Req_UI_03 System connects and provides information to Social Services and primary healthcare for
better intervention

GKPILOT_01, GKPLAT_06

USER Req_UI_04 System connects and provides information to healthcare professionals GKPILOT_01, GKPLAT_06

USER Req_UI_05 The system must provide the stakeholders with information (data, elaboration, warning, state,
...) in an appropriate manner (by type of content and by style of associated with that particular
subject (User, Caregiver, HCP,)representation) with the skills

USER Req_UI_06 Help Desk services will be implemented to support / inform final users and informal
caregivers.

GKPILOT_04, GKPILOT_09

USER Req_UI_07 The whole system must not be dangerous for the user

USER Req_UI_08 Allow the configuration of restitution information related to users / Designation of a third
party to get access to the data

USER Req_UI_09 Allow the configuration of activity monitoring by caregivers (formal
and informal)

GKPILOT_03

USER Req_UI_10 The solution has to be intuitive and easy to use

USER Req_UI_11 Provide feedback to users concerning the equipment installed in the assisted home

USER Req_UI_12 User input can determine opt-outs and data correction

USER Req_UI_13 Participants to be given full training on all hardware and software on delivery

USER Req_UI_14 Users and referring services offered training on digital literacy & privacy

USER Req_UI_15 Have easily available support for participants, email, phone, peer support and forums

USER Req_UI_16 Participants to complete comprehensive information sheet at sign up to determine which
aspects of the project suitable and what will participate in

USER Req_UI_17 Potential participants are identified and informed about the project through a variety of
methods - self identifying, NHS or council services, or third sector services

USER Req_UI_18 The services shall provide ways of promoting physical exercising and mental training.

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 108

Type ID Description Platform Interaction

USER Req_UI_19 Users must be able to choose the services, service components and applications they will
use.

GKPILOT_02

USER Req_UI_20 The system shall be easy to learn and remember for older adults

USER Req_UI_21 The system shall have an attractive user interface for older adults

USER Req_UI_22 Enabled users must be able to delete a measurement

USER Req_UI_23 Allow the configuration of activity monitoring by caregivers (formal and informal) GKPILOT_03

APP Req_AP_01 System alerts on medical appointments to elderly and caregivers

APP Req_AP_02 System sends alerts to assisted elderly and caregiver to take medication. Reminder could be
configurable remotely

APP Req_AP_03 The solution shall provide a dashboard displaying the user's personal data GKPILOT_07

APP Req_AP_04 The solution shall provide tools to question the users about any issues/trouble he/she could
have

APP Req_AP_05 When emergency trigger alert raised will need to alert either named contact or statutory
service

APP Req_AP_06 Participants should be able to have an overview of the data gathered and trends, changes
etc. through a web portal

GKPILOT_07

APP Req_AP_07 Alerts should be interactive so as to ask questions alongside to gather more information

APP Req_AP_08 Notification system on the watch must be configurable to deliver medication reminders, and
able to be programmed remotely

GKPILOT_04, GKPILOT_08

APP Req_AP_09 The system shall provide useful help for users on how to do the tasks
(virtual assistant)

APP Req_AP_10 Audience information: Information about the users of the marketplace, their profile and
services downloaded to estimate potential for exploitation and attract more service providers

SEC Req_PS_01 Security of data and information generated (prevention from unauthorised access) GKPLAT_10

SEC Req_PS_02 The use of information will be closely linked to identification mode - enabled users will only
have access to the information they have been enabled for.

GKPILOT_05, GKPLAT_09,
GKPLAT_11

SEC Req_PS_03 The system should respect the privacy and data protection of the users

SEC Req_PS_04 The system must ensure adequate security of the acquired data in terms of protection
against accidental damage and deletion

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 109

Type ID Description Platform Interaction

SEC Req_PS_05 Ensure the discretion of the solution

SEC Req_PS_06 The solution shall preserve anonymous data and respect data privacy

SEC Req_PS_07 The system should be managed by a User Management module to control access in UIs and
services

GKPLAT_10, GKPLAT_11

SEC Req_PS_08 The system should respect the privacy and data protection of the users

D_ABS Req_DA_01 Data gathered must be able to be fed into the Leeds Care Record (integrated health & social
care).

D_ABS Req_DA_02 Data should link to GP record so can view activity, plus gather info on hospital admissions etc.
Will need to fit with services provided by EMIS and TPP to
achieve

GKPLAT_05

D_STOR Req_DS_01 The data produced by IoT sensors must be stored in local premises or in the HPE Cloud GKPLAT_04

NT Req_NT_01 Participants will need mobile data/WiFi access on devices to link to watch, and also
externally to log into portal

NT Req_NT_02 The supporting system allows messages between carers and includes options for notes from
GPs, services, carers etc.

NT Req_NT_03 The IoT sensors must communicate with the system using known "standard" protocols

DEVICE Req_DSP_01 System detects location of assisted elderly person outdoors and informs caregivers of it

DEVICE Req_DSP_02 The IoT platform should allow its own extension with other components (new sensors, new
connectors etc) without a need for adaptation

GKPLAT_03, GKPILOT_08

DEVICE Req_DSP_03 The system must be able to acquire body weight measurements collected by smart devices GKPLAT_04

DEVICE Req_DSP_04 System collects information useful for the early detection of pathologies (insomnia, physical
inactivity through wearables…)

GKPLAT_04

DEVICE Req_DSP_05 Connection with medical devices to measure vital signs (blood pressure, glucose…) GKPLAT_04

DEVICE Req_DSP_06 System receives information about the physical activity of the elderly via wearable:
measuring activity, steps, distance walked…

DEVICE Req_DSP_07 User monitoring must be performed using IoT sensors able to provide their measurements
via an Internet or a Bluetooth connection.

GKPLAT_04

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 110

Type ID Description Platform Interaction

DEVICE Req_DSP_08 Data collection must be as "transparent" to the user as possible (i.e. no need for user
intervention). The IoT sensors should not require the user to change their daily living habits.

GKPLAT_04

DEVICE Req_DSP_09 Instructions to the measurement devices used must be in the native language of the user

DEVICE Req_DSP_10 The solution shall communicate only with authenticated devices GKPLAT_09, GKPLAT_11

AI Req_AI_01 Generation of reports on routines to detect trends on the assisted person behaviour GKPILOT_07, GKPLAT_08

AI Req_AI_02 Alerts/alarms inform of changes in parameters of routine

AI Req_AI_03 The services offered should be selected and adapted in relation to the current situation of the
user

AI Req_AI_04 Personalized agenda for assisted elderly person and its relatives/ informal caregivers. Elderly
can add events to this agenda

AI Req_AI_05 Alarm to alert informal caregivers or emergence services of a risky situation stemming from a
period of inactivity

GKPLAT_12

AI Req_AI_06 The data collected by IoT sensors must be processed to generate information about the
well-being and health status of the user

GKPLAT_04, GKPLAT_06,
GKPLAT_08

AI Req_AI_07 Solution provides information on activities that assisted elderly people like or are keen on

AI Req_AI_08 System sends alerts to remind the elderly daily habits / routines (decided by elderly and also
by caregivers)

GKPILOT_06

AI Req_AI_09 System suggests to the elderly to do physical activity or other activities GKPLAT_08

AI Req_AI_10 To detect sleep patterns (influence of polimedication)

AI Req_AI_11 Trend information may require graphic representations. GKPILOT_07

AI Req_AI_12 Contingency abnormal alert information must be formatted in a not alarming manner - even
because they only represent suspicions of anomalies.

AI Req_AI_13 Algorithm on falls identification decides where to send
alerts based on risk and information given on sign up -informal carers, services etc.

GKPLAT_12

AI Req_AI_14 The solution shall detect if the assisted is in bed or chair and estimate the time
spent in bed or chair.

GKPLAT_08

AI Req_AI_15 System provides periodic reports and historical data about assisted elderly activity GKPILOT_01

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 111

Type ID Description Platform Interaction

AI Req_AI_16 System generates information for KPI to be included dedicated Platform for monitoring of the
service and evaluation of service benefits (number of detected alerts, people assisted,
life expectancy, number of informal caregivers participating)

AI Req_AI_17 Produce location-based reminders of events/activities the user is interested in to
promote social inclusion

AI Req_AI_18 System products (data, analysis, messages, highlights) could be purely informative. GKPLAT_07

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 112

Appendix C Platform components interactions overview

Requirement
ID Narrative T

h
in

g
s
 M

a
n

a
g

e
m

e
n

t

S
y

s
te

m

B
ig

D
a

ta
 I
n

fr
a

s
tr

u
c

tu
re

S
e

rv
ic

e

G
K

 D
a

ta
 I
n

te
g

ra
ti

o
n

T
ru

s
t

A
u

th
o

ri
ty

M
a

rk
e

t
S

e
rv

ic
e

H
e

a
lt

h
 A

c
ti

v
it

y

M
o

n
it

o
ri

n
g

A
I
P

e
rs

o
n

a
li
z
e

d
 R

is
k

D
e

te
c

ti
o

n
 &

A
s
s
e

s
s
m

e
n

t

In
te

ll
ig

e
n

t
M

e
d

ic
a

l

D
e

v
ic

e
 C

o
n

n
e

c
to

rs

M
u

lt
i R

o
b

o
t

C
o

n
n

e
c

to
rs

A
u

th
o

ri
n

g

T
o

o
l

GKPILOT_01
an AuthorizedActor (Patient, GP, Caregiver) subscribes to
health events receives notifications

X X X X

GKPILOT_02
a GK actor browses the MarketService catalogue to find a
suitable solution and obtains the endpoint of the service

X

X X

GKPILOT_03
External Pilot service gets updated metrics from collectors
or devices

X

X

X

GKPILOT_04 GP uses pilot app to send feedback to patient X

X

GKPILOT_05
a User registers his identity to the Thing he bought through
the MarketService

X

X X

GKPILOT_06
External Pilot Service generates advices without exploiting
platform services

X

X

GKPILOT_07
HC Actor (Patient/GP/Caregiver) configures and visualizes a
personalized dashboard

X

X X

X

GKPILOT_08 A Company Actor adds a new KET in the MarketService X

X X

GKPILOT_09 A patient gets automatic recommendations X X X X

X

GKPLAT_01
a Business Actor browses the MarketPlace catalogue using
specific constraints

X

X X

GKPLAT_02
An Authorized user / service registers a new GK Thing in the
TMS through the MarketService

X

X X

GKPLAT_03
An authorized user / service wants to find a Thing in the TMS
to use it

X

X

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 113

Requirement
ID Narrative T

h
in

g
s
 M

a
n

a
g

e
m

e
n

t

S
y

s
te

m

B
ig

D
a

ta
 I
n

fr
a

s
tr

u
c

tu
re

S
e

rv
ic

e

G
K

 D
a

ta
 I
n

te
g

ra
ti

o
n

T
ru

s
t

A
u

th
o

ri
ty

M
a

rk
e

t
S

e
rv

ic
e

H
e

a
lt

h
 A

c
ti

v
it

y

M
o

n
it

o
ri

n
g

A
I
P

e
rs

o
n

a
li
z
e

d
 R

is
k

D
e

te
c

ti
o

n
 &

A
s
s
e

s
s
m

e
n

t

In
te

ll
ig

e
n

t
M

e
d

ic
a

l

D
e

v
ic

e
 C

o
n

n
e

c
to

rs

M
u

lt
i R

o
b

o
t

C
o

n
n

e
c

to
rs

A
u

th
o

ri
n

g

T
o

o
l

GKPLAT_04
A KET sends data to the platform and it is federated and
stored in the platform

X

X X

X X

GKPLAT_05
the Data Federation Component pulls data from configured
external repositories

X

X X

GKPLAT_06
An HC User (Patient/GP/Caregiver) reads federated data
from the Platform

X

X X

GKPLAT_07
Data series can be aggregated / anonymised in order to be
included in an offering in the MarketService

X

X X X

GKPLAT_08 Data are used by processing services X

X X

X

GKPLAT_09 The verification of a JWT token X

X

GKPLAT_10
the GK-Actor (person or service) verifies its credentials and
gets a JWT token associated to his role

X

X X

GKPLAT_11 A User is authorized to accesses a Thing in the platform X

X

GKPLAT_12 A HealthProfessional requests a risk prediction for a patient X X X X

X

 D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 114

Appendix D Logical Architecture diagram

Figure 18 - High level UML Domain Model

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 115

Appendix E GATEKEEPER Spaces
This Appendix reports the definition of GATEKEEPER Spaces referenced in this
deliverable as defined in the DOA:

Figure 19 – GATEKEEPER Spaces and Stakeholders

The Healthcare Space provides a set of services, tools, data and components for
healthcare, complying with the health protocols and regulations. It also connects with
health information systems and records. It enables to build Business-to-Business (B2B)
solutions and services from companies to healthcare providers.

The Consumer Space provides a set of services, tools and support components that
allow the integration and interoperability of consumer-oriented solutions, appliances,
robots, applications, data, sensors and platforms. It allows to build Business to Consumer
(B2C) solutions and services to be used by end users for health or life-style monitoring,
as well as integrated with solutions from the Healthcare Space to combine services and
provide a holistic health view and monitoring in return.

The Business Space provides the adequate ecosystem for small, medium and large
companies to develop solutions, services and devices alone or in partnership with other
companies following a set of standards in order to reach end-users (Consumer Space) or
health providers (Healthcare Space).

The Ecosystem Transaction Space provides a large selection of applications and
devices leveraging AI, Big Data, machine learning and IoT technologies; coupled with a
variety of smart objects (e.g. wearables, sensors, robots) currently available in the market
to support Data Sharing and Value-based healthcare.

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 116

Appendix F Glossary
Term Description

ACL Access Control List

AD Active Directory

ADL Activities of Daily Living

AI Artificial Intelligence

B2B Business to Business

B2G Business to Government

CA Certification Authority

CoAP Constrained Application Protocol

CVS Comma Separated Value

DAPS Dynamic Attribute Provisioning Service

DoA Description of the Action

ECG Electrocardiogram

EHR Electronic Health Record

FHIR Fast Healthcare Interoperability Resources

GDPR General Data Protection Regulation

GTA GATEKEEPER Trust Authority

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

JWT JSON Web Token

KET Key Enabling Technology

LDAP Lightweight Directory Access Protocol

ML Machine Learning

OTP One Time Password

PKI Public Key Infrastructure

RDF Resource Description Framework

REST Representational State Transfer

D3.2 - Overall GATEKEEPER architecture

Version 1 I 2020-07-31 I GATEKEEPER © 117

Term Description

RUC Reference Use Case

SAREF Smart Appliance REFerence

TD Thing Description

TMS Things Management System

UI User Interface

URI Uniform Resource Identifier

VPN Virtual Private Network

WoT Web of Things

XML eXtensible Markup Language

